Давление воды в теплотрассе

Нормы и требования

Теплоноситель должен обеспечивать следующие параметры окружающей среды:

  • температура воздуха в пределах 20… 22°С;
  • уровень влажности: 30-45%.

Если интересует вопрос, какое давление должно быть в многоквартирном доме, при этом следует учесть этажность здания:

  • 2-4 атмосфер для зданий не выше 5 этажей;
  • 5-7 атм на объектах большей высоты (9-10-этажные постройки);
  • до 10 атм в системе отопления высотных зданий (более 10 этажей).

По теплотрассе от ТЭЦ проходит горячая вода, характеризующаяся давлением до 12 атм. Она подается к многоэтажным объектам. Для обеспечения рабочей нормы давления на нижних этажах используются регуляторы. Чтобы увеличить нагрузку в системе отопления на верхних этажах, устанавливаются насосы. Благодаря им создается достаточная нагрузка, что позволяет поднимать горячую воду по коммуникациям.

Нормы для системы отопления частного дома отличаются. Так, для обеспечения эффективной циркуляции теплоносителя необходимо поддерживать давление в пределах 1,5-2 атм. Контур системы отопления характеризуется небольшой протяженностью, часто требуется обслуживать одноэтажные постройки. Значит, превышать указанный уровень нагрузки не рекомендуется.

Во всех «высотках» постсоветского пространства используется закрытая отопительная система. Поскольку теплоносителю приходится подниматься на большую высоту, именно высота здания определяет, какое давление в системе центрального отопления будет использоваться в конкретном доме. Так, в девятиэтажках оно должно составлять 5-7 бар.

В целом же попытки замерить (и тем более снизить) давление в условиях централизованного теплоснабжения — бессмысленны. Даже снятые в тепловом пункте с манометра показания не дают целостной картины, поскольку на разных этажах давление будет различаться. Единственное, что может обеспечить хозяин квартиры, так это подходящие для высотного дома радиаторы — например, биметаллические или хотя бы алюминиевые.

Заметно ниже рабочее давление в закрытой системе отопления частного дома — от 1,5 до 2 баров. Чем более высоким удаётся сделать давление, тем эффективнее отопительная система. Однако перед тем, как создать давление в системе отопления, следует знать, что бытовые теплогенераторы в большинстве своём поддерживают давление не выше 3 бар, а попадаются и более «хрупкие» модели, рассчитанные на 2 или даже на 1,6 бар.

Схемы ТП с подмешиванием при недо­статочном напоре в обратной линии[править]

Rifar SUPReMO

Если напор в обратной линии ТП при расчетном или каком-либо переменном режиме оказывается меньше высоты местных систем и не может обеспечить их залив, необ­ходимо увеличить напор путем установки на обратной линии регулятора давления «до себя» (регулятора подпора). Давление, поддерживае­мое этим регулятором, назначают обычно на 0,3—0,8 кгс/см2 (0,03—0,08 МПа) больше, чем статическое давление местных систем. Меньшую величину избыточного давления (0,3-0,5 кгс/см2) (0,03-0,05 МПа) назначают при регуляторе подпора непрямого действия.

Рис. 4.54. Схемы тепловых пунктов при недостаточном напоре в обратной линии Н0мс и Нстмс:

а — схема ИТП; б — схема ЦТП; в — пьезометрический график к схеме б; Н„— напор в подающей линии тепловой сети; Н0 (Р0) — на­пор (давление) в обратной линии тепловой сети; Нст(рст) — напор (давление) при статическом режиме тепловой сети; Нп1 — напор в подающей линии потребителей; Н01 — напор в обратной линии потребителей;

Нт1— напор при статическом режиме у потребителей; НпА — напор в подающей линии потребителей при режиме автоном­ной циркуляции; Н0А— напор в обратной линии потребителей при режиме автономной циркуляции; Нмс — высота местных систем; Нсо — высота систем отопления;
рабочий режим;
статический режим;
режим автономной циркуляции;
дросселирование напора (указанные обозначения относятся к рис. 4.54—4.65)

Для индивидуальных тепловых пунктов (ИТП) целесообразно использовать простую схему, показанную на рис. 4.54,а. В этой схеме регулятор подпора — отсечки поддерживает необходимое давление в обратной линии ИТП при работе сети. При наступлении статиче­ского режима регулятор подпора, стремясь поддержать давление настройки, закрывается.

Уход воды из местных систем но подающее линии предотвращается обратным клапаном. В этой схеме требования к плотности отклю­чения потребителей при статическом режиме снижены. Поэтому на подающей линии ЦТП допустима установка обратного клапана, а на обратной линии — регулятора давления прямо­го действия.

Для крупных центральных тепловых пунк­тов (ЦТП) с повышенными требованиями к заполнению местных систем при Нст<Нмс необходимо обеспечить высокую герметичность отсечки потребителей в период статического режима. С этой целью в ЦТП устанавливают на подающей и обратной линиях регуляторы давления непрямого действия (рис. 4.54, б).

При работе сети регулятор подпора (отсечки), установленный на обратной линии, поддержи­вает необходимое давление в ней. Поддержание давления в подающей линии необходимо лишь для того, чтобы обеспечить постоянную деятельность клапана отсечки на подающей линии и готовность его срабатывания к момен­ту отсечки. При совместной работе обоих клапанов располагаемый напор на выводе ЦТП поддерживается постоянным.

При статическом режиме оба клапана закры­ваются по импульсу падения давления в пода­ющей линии. С падением давления у потреби­телей за отсечными клапанами включается подпиточный насос и открывается регулятор подпитки, который обеспечивает залив местных систем. Установка подпиточного насоса в ЦТП особо необходима при непосредственном водоразборе у потребителей.

Пьезометрический график к схеме 4.54, б показан на рис. 4.54, в.

Пьезометрический график тепловой сети.jpg

Если давление в обратной линии ТП при работе тепловой сети превышает допустимое для нагревательных при­боров систем отопления, на этой линии следует установить подкачивающие насосы. Напор на­сосов выбирают таким, чтобы давление на их всасывающей стороне было ниже допустимого для приборов, но вместе с тем не приводило к опорожнению систем отопления.

Схема ИТП при невысоких требованиях к герметичности отсоединения системы отопления показана на рис. 4.55, а. Схему применяют в случаях, когда изменения давления на всасывающей стороне подкачивающих насосов при переменных гид­равлических режимах тепловой сети не при­водят к опорожнению системы отопления. В этих условиях нет необходимости стабилизировать давление в обратной линии.

При аварийном останове подкачивающих насосов для предотвращения недопустимого повышения давления у потребителя произво­дится отсечка ИТП от тепловой сети. Отсечка по обратной линии осуществляется установкой специального обратного клапана, поскольку клапаны, расположенные за насосами, теряют плотность посадки при переходах с рабочего насоса на резервный.

Отсечка по подающей линии выполняется установкой клапана, которому в целях под­держания его работоспособности придают функ­ции регулятора давления «после себя». Импуль­сом на отсечку подающей линии служит исчез­новение напора подкачивающих насосов.

Для предотвращения повышения давления у потребителя в момент отсечки, а также на случай неплотности отсечных клапанов уста­навливают предохранительный клапан, который срабатывает при давлении, несколько меньшем, чем допустимое для нагревательных прибо­ров.

При статическом режиме тепловой сети необходим останов подкачивающих насосов. В противном случае возможны опорожнение потребителя ИТП (при невысоком статическом напоре) и опрокидывание циркуляции в си­стемах отопления соседних потребителей. Им­пульсом на останов подкачивающих насосов служит падение напора в подающей линии тепловой сети.

Для повышения срока службы системы отопления при статическом режиме тепловой сети в схеме применяют перемычку с двумя нормально закрытыми задвижками и открытым спускником между ними. Эта перемычка позволяет создать автономную циркуляцию во­ды в системе отопления и существенно отда­лить тем самым момент необходимого слива воды из системы при нарушении работы тепло­вой сети.

Принци­пиальная схема автоматизации крупного ЦТП показана на рис. 4.55, б. В этом случае раз­ность между напором на всасывающей стороне подкачивающих насосов и высотой местных си­стем невелика, и при переменном режиме тепловой сети системы могут опорожниться. Эту схему применяют и для ИТП, если напор в обратной линии потребителей при перемен­ном режиме тепловой сети не может обеспе­чить залив систем отопления, и в связи с этим необходимо стабилизировать напор во всасы­вающих патрубках подкачивающих насосов.

Рис. 4.55. Схемы тепловых пунктов при не­допустимо высоком давлении в обратной линии Р0>Pдоп, Pст>Pдоп:Давление воды в теплотрассе

а — схема ИТП; б — схема ЦТП; в — пьезо­метрический график к схеме а; г — пьезо­метрический график к схеме б; обозначения напоров см. рис. 4.54.

При останове подкачивающих насосов от­сечка подающей и обратной линий осуществля­ется соответствующими регуляторами давле­ния, срабатывающими при исчезновении напора подкачивающих насосов. При статическом режиме останавливаются насосы, а затем про­изводится отсечка потребителей.

Для крупных ЦТП, а тем более при непо­средственном водоразборе у потребителей необходима подпитка отключенных от тепловой сети потребителей. Подпитка осуществляется по подпиточной линии, оборудованной регуля­тором подпитки. Импульс для регулятора под­питки принимается из подающей линии разводящих тепловых сетей за клапаном отсечки.

В нормальном режиме регулятор подпитки закрыт вследствие высокого давления в импуль­сной точке. При отсечке потребителей и по­степенном падении давления в разводящих сетях за ЦТП регулятор подпитки вступает в работу, поддерживая давление у потребителей, не допускающее опорожнение их местных сис­тем.

При организации автономной циркуляции теплоносителя у потребителей величину импуль­са регулятора подпитки следует сохранить по сравнению со статическим режимом, однако точку отбора импульса необходимо перенести на обратную линию (см. рис. 4.55, б).

Если напор в подающей линии тепловой сети оказывается меньше высоты местных систем, в ТП устанавливают регу­лятор подпора на обратной линии и насос на подающей линии. Давление, поддерживаемое регулятором подпора, выбирают таким, чтобы обеспечить залив местных систем, а напор насо­са должен быть достаточным для преодоления сопротивления разводящих трубопроводов и местных систем при указанном давлении в их обратной линии.

Простейшая схема ИТП, в которой пони­жены требования к заливу системы отопления при аварийных режимах, показана на рис. 4.56, а. На обратной линии в этой схеме устанавли­вают регулятор подпора прямого действия, который закрывается при останове подкачи­вающих насосов. Слив воды из системы отопле­ния по подающей линии предотвращается обратным клапаном.

При статическом режиме для предупреж­дения опрокидывания циркуляции у соседних потребителей подкачивающие насосы останав­ливаются. Это происходит по импульсу паде­ния давления в подающей линии. Если напор подкачивающего насоса оказывается достаточ­ным при статическом режиме для подачи воды к верхним точкам системы отопления (Нст Ннас- Нсо>

Для крупных ЦТП с большим числом потребителей и особенно при непосредственном водоразборе применяют схему, показанную на рис. 4.56, б. Для создания необходимого давления в обратной линии потребителей в ЦТП устанавливают регулятор подпора непрямого действия, который поддерживает регулируемое давление с высокой точностью и, главное, обеспечивает герметичность отсечки потребителелей по обратной линии.

При останове подкачивающих насосов отсечка потребителей от внешней сети осуществляется регулятором давле­ния и обратным клапаном, а их подпитка — включением подпиточного насоса. Необходимое давление подпиточной воды обеспечивает регу­лятор подпитки. Величина настройки этого ре­гулятора определяется высотой присоединенных местных систем, а при непосредственном водоразборе у потребителей дополнительно учиты­вают потери напора по разводящей сети.

Рис. 4.56. Схемы тепловых пунктов при недостаточном напоре в подаю­щей линии (Нп-∆Нр<Hмс, Нстмс):

Перепад давления и его значение для функционирования системы отопления

При разных условиях параметры теплоносителя могут меняться в большую или меньшую сторону. Причины падения нагрузки в системе:

  1. Утечка воды. По мере уменьшения объема жидкости снижается нагрузка на внутренние стенки коммуникаций. При существенной утечке даже более сильный нагрев теплоносителя не обеспечит требуемый результат. Чаще всего обнаруживается нарушение герметичности расширительного бачка. В этом случае сложно обнаружить причину перепада нагрузки в системе, т. к. при появлении течи из мембраны бака вода остается внутри емкости. Предположить утечку можно по снижению интенсивности прогрева помещения, если при этом параметры теплоносителя и оборудования не менялись.
  2. Другие участки, где высока вероятность нарушения герметичности: теплообменник котла (предохранительный клапан), микроповреждения труб, оборудования, чаще теплоноситель вытекает на участках, пораженных коррозией.
  3. Выделение воздуха из горячей воды. Чтобы избежать подобных неприятностей, жидкость должна проходить деаэрацию перед заполнением труб.
  4. Если в системе установлены алюминиевые батареи, то на начальном этапе их эксплуатации некоторый объем воды преобразуется: при этом выделяются составные компоненты (водород, кислород). При контакте с металлом кислород способствует появлению окисной пленки. Водород не накапливается внутри, а выводится посредством воздухоотводчика. По мере окисления внутренней поверхности радиаторов из алюминия придется периодически увеличивать объем теплоносителя, что позволяет обеспечивать требуемый уровень давления внутри системы.

Рост нагрузки на стенки труб и оборудования увеличивается в ряде случаев:

  • уменьшение просвета коммуникаций, что может быть вызвано засором;
  • воздушная пробка, что препятствует прохождению теплоносителя по трубам;
  • существенное увеличение температуры горячей воды, при закипании давление возрастает многократно.

Возможные решения проблем при снижении нагрузки внутри коммуникаций:

  1. Когда обнаруживается протечка, выполняется ремонт системы. Если необходимо, выполняется замена уплотнительной прокладки, участка трубопровода, устанавливаются муфты.
  2. Производится наладка оборудования, что нужно в случаях, когда изначально заданы параметры теплоносителя, не соответствующие условиям окружающей среды.
  3. Если уменьшился просвет коммуникаций, выполняется промывка системы от накипи. При этом предварительно демонтируется котел.
  4. Когда контур отопительной системы был изменен, площадь объекта увеличилась, определяют более подходящий диаметр труб, после этого производится замена коммуникаций.

Если решается вопрос, почему возникают перепады и как с ними бороться, необходимо осмотреть контур по всей протяженности на предмет протечек, проверить работу оборудования.

Наиболее распространённой причиной снижения давления в системе является утечка воды. К самым «слабым» местам относятся места стыков трубопровода с теплогенератором или отопительным прибором. Реже трубу прорывает в произвольном месте, если хозяин не уследил за её износом или же приобрёл изначально бракованное изделие.

Самый верный показатель наличия течи — снижение статического давления, измерить которое можно, отключив насос.

Если и статическое давление в системе отопления закрытого типа находится в норме, проверить необходимо сами насосы. Для поиска места протечки один за другим отключают разные участки системы, наблюдая за уровнем давления. После определения повреждённого участка трубопровода его отключают от системы для ремонта.

Если течь так и не была найдена, а давление теплоносителя продолжает снижаться, необходимо вызвать специалистов. Освободив отопительную систему от воды и закачав в неё воздух, они быстро определят «пробоину» по струе вырывающегося воздуха. В случае если трубы укрыты в полу или в межпотолочном пространстве, специалисты используют сканер для обнаружения избыточной влажности, позволяющий с точностью до нескольких сантиметров обнаружить невидимую трещину в трубе.

Починка отопления

Второй виновник падения давления — неисправности котельного оборудования. Среди факторов, из-за которых падает давление в газовом котле, выделяют четыре основных:

  • повреждённая камера расширительного бака;
  • вызванное гидроударом разрушение битермического теплообменника;
  • возникновение в теплообменнике микротрещин (из-за естественного износа металла, заводского брака или профилактических промывок);
  • обилие накипи в теплообменнике (вечная проблема регионов с жёсткой водой).

Любая из вышеперечисленных проблем решается. Интегрированный в котёл расширительный бак можно заглушить, заменив его внешним аналогом. Неисправный теплообменник в большинстве случаев можно запаять. Жёсткость воды легко снижается при использовании специальных добавок. Однако перед тем, как поднять давление в котле отопления самостоятельно, лучше проконсультироваться с квалифицированным инженером, специализирующемся на обслуживании котлов.

Ещё более опасна ситуация, когда давление воды в системе отопления частного дома бесконтрольно повышается. Рост давления провоцируют:

  1. остановка тока теплоносителя по контуру;
  2. засорение грязевика или другого фильтра;
  3. вызванная сбоем автоматики или ошибкой человека постоянная подпитка системы;
  4. возникновение воздушных пробок;
  5. перекрытие задвижки по направлению течения теплоносителя;
  6. ошибочно выполненный расчёт давления для расширительного бака или его недостаточная вместительность (давление внутри ёмкости должно быть на 1/5 меньше, нежели системное, а вместительность должна равняться десятой части объёма всего теплоносителя в сети);
  7. возникновение трещин в мембране расширительного бака (если не предусмотрена возможность смены мембраны, бак придётся менять полностью).

Для оптимального функционирования любой отопительной схемы необходим стабильный и определенной величины перепад давлений, т.е. разность его значений на подаче теплоносителя и обратке. Как правило, она должна составлять 0,1-0,2 МПа.

Если данный показатель меньше, это свидетельствует о нарушении движения теплоносителя по трубопроводам, в результате чего вода проходит через радиаторы, не нагревая их в требуемой степени.

В случае превышения величины перепада указанного выше значения можно говорить о «застое» системы, одной из причин которого является завоздушивание.

  1. Прежде всего, необходимо помнить, что оптимальная работа системы теплоснабжения, в т.ч. создание требуемого давления в ней, зависит от корректности проектирования, в частности, гидравлических расчетов, и монтажа магистралей и трубопроводов, а именно:
    — подающая магистраль в большинстве схем должна располагаться наверху, обратная, соответственно, внизу;
    — для изготовления розливов следует использовать трубы диаметром 50-80 мм, для стояков – 20-25 мм;
    — подводка к приборам отопления может выполняться из тех же труб, из которых выполнены стояки, или на шаг меньше.

    Занижать сечение обвязки радиаторов допускается только при наличии перед ними перемычки.

    Рисунок 3 – Перемычка перед радиатором отопления

  2. Как известно, при повышении температуры теплоноситель увеличивается в объеме и повышает давление в отопительной системе. Например, при 20 0С оно может увеличиться на 0,13 МПа, при 70 0С – на 0,19 МПа. Поэтому одним из вариантов регулирования напора является изменение степени нагретости воды.
  3. Для увеличения напора теплоносителя, что обычно требуется для обеспечения теплом верхних этажей высотных зданий, применяют циркуляционные насосы.
  4. Автоматическое регулирование рабочего давления и его перепада в отопительных схемах небольших домов осуществляется посредством расширительных баков, как правило, мембранного типа. Они начинают работать тогда, когда величина давления в системе достигает 0,2 МПа. При этом данные устройства отбирают излишки горячего теплоносителя, вследствие чего напор поддерживается на требуемом уровне.

    Рисунок 4 – Мембранный расширительный бак

    Расширительный бак, объем которого обычно принимается равным около 10 % от общего объема системы, может монтироваться в любой части контура. Однако специалисты рекомендуют устанавливать его на прямом участке трубопровода обратки перед циркулярным насосом (при его наличии).

    Для предотвращения ситуации, когда емкости устройства не хватает при продолжающемся росте давления, в схемах предусмотрено использование предохранительного клапана, выводящего из системы излишки теплоносителя.

  5. В больших и сложных отопительных системах, например, в многоэтажных зданиях, для подержания нормативного давления применяют регуляторы, которые дополнительно предотвращают завоздушивание даже при резких изменениях напора в магистралях, а также шумообразование на регулирующих клапанах. Монтируют их или на перемычке между подающим и обратным трубопроводами, или на байпасной линии насоса.

    Рисунок 5 – Регулятор давления

  6. Еще одним способом регулирования напора в схемах теплоснабжения многоуровневых домов можно назвать использование запорной арматуры. Например, при необходимости повышения давления уменьшают сечение обратного трубопровода с помощью задвижки.

Отклонение давления в большую или меньшую сторону от нормативного требует установления причины этого явления и ее устранения.

Схемы ТП с увеличением располагаемого напора и защитой местных систем[править]

Недостаток располагаемого напора у потребителей может сочетаться с необходимостью защиты их мест­ных систем от опорожнения или от недопусти­мого давления в обратной линии. В первом случае увеличения располагаемого напора до­стигают только установкой подкачивающих на­сосов на подающей линии. Для небольших ТП применяют схему, показанную на рис. 4.

56, а, в которой должна быть исключена перемычка между подающей и обратной линиями, располо­женная на нагнетательной стороне подкачи­вающих насосов, и добавлен байпас насосов с задвижкой и обратным клапаном. При такой схеме при нормальной работе ТП поддержи­вается постоянным давление в обратной линии.

Нст Ннас-Нс.о>6-10 м. (4.1)

Для ЦТП увеличение располагаемого напо­ра и напора в обратной линии осуществляют по схеме, показанной на рис. 4.56, б, в которой должна быть установлена перемычка с обрат­ным клапаном вокруг подкачивающих насосов. При работе тепловой сети и останове подка­чивающих насосов схема выполняет те же функ­ции, что и схема а (см. рис. 4.56).

При стати­ческом режиме потребители автоматически отключаются от тепловой сети и по подпиточной линии производится их подпитка. Авто­номную циркуляцию теплоносителя осущест­вляют при работе подпиточного насоса, и поэтому ее возможность не зависит от величины статического напора в тепловой сети (рис. 4.56, г).

При сочетании защиты от недопустимого давления в обратной линии и увеличения рас­полагаемого напора подкачивающие насосы на обратной линии могут одновременно выпол­нять обе функции. Поэтому схемы, показанные на рис. 4.55, а и б, обеспечивающие защиту потребителей, используют и для увеличения располагаемого напора.

Независимое присоединение местных систем применяют обычно в целях повышения надежности их работы. Эту схему ТП используют для присоединения к тепловой сети уникальных сооружений или местных сис­тем со сложным переменным режимом. Кроме того, местные системы могут быть присоедине­ны к тепловой сети с помощью подогрева­телей в тех случаях, при которых необходима установка подкачивающих или подмешивающих насосов.

Рис. 4.58. Схема теплового пункта при независи­мом присоединении местных систем (Нп-∆Hр < Нмс ):

а—пьезометрический график при Нп-∆Hр < Нмс; б—пьезометрический график при Р0> Рдоп, обозна­чения напоров см. рис. 4.54.

При напоре в подающей (или обратной) линии, недостаточном для залива местных систем, используют схему ТП, показанную на рис. 4.58, а. Давление в обратной линии разво­дящей тепловой сети поддерживается регулято­ром подпитки. При останове циркуляционных насосов существует опасность попадания не­охлажденной воды из подающей магистрали в обратную линию тепловой сети.

При температурном графике разводящей тепловой сети 95 (105) —70°С быстрое падение температуры в ее подающей линии с 95 (105) до 70 °С считается допустимым. Однако при расчетной температуре воды в подающей линии разводящей сети 130—140 °С резкое падение температуры в этой линии, наступающее при останове циркуляции во внешней сети, недопус­тимо. Поэтому во втором случае при переходе тепловой сети к статическому состоянию необ­ходимо остановить циркуляционные насосы систем отопления.

Если независимую схему присоединения местных систем применяют в условиях недо­пустимо высокого давления в обратной линии Р0> Рдоп, принципиальную схему автомати­зации ТП не изменяют, но подпитку разводя­щей тепловой сети и местных систем потреби­телей осуществляют без подпиточного насоса. На обратной линии разводящей тепловой сети устанавливают предохранительный клапан. Пьезометрический график теплового пункта с независимой схемой при Р0> Рдоп показан на рис. 4.58, в.

Рис. 4.59. Схемы тепловых пунктов при снижении расчетной температуры воды у потребителей до 95—105°С

а—схема ТП при стабильном гидравлическом режи­ме тепловой сети; б—схема ТП при нестабильном гидравлическом режиме тепловой сети; в—пьезо­метрический график к схеме а; обозначения напо­ров см. рис. 4.54.

Схемы ТП в закрытой системе теплоснаб­жения[править]

Примеры схем ТП при двух ступенях нагрева водопроводной воды и отклонениях гидравлического режима тепловой сети в точке подключения ТП от нормальных значений пока­заны на рис. 4.64 и 4.65. Схема ТП с последо­вательным включением подогревателей горя­чего водоснабжения и независимым присоеди­нением систем отопления изображена на рис. 4.64.

Схема ТП со смешанным включением по­догревателей при недостаточном располагаемом напоре у потребителей показана на рис. 4.65. Схема соответствует варианту гидравлического режима, при котором подкачивающие насосы устанавливают на подающей линии, и предусматривает снижение расчетной температуры воды у потребителей до 95—105 °С.