Доктор лом расчетные схемы для балок

Примеры влияния длины опорных участков

Мы выяснили, впрочем, это и без нас было известно, что у всего есть предел. За пределом у человека – смерть, у строительной конструкции – разрушение, но за жизнь сражаются все. Когда мы давили на линейку пальцем в одном из мест, где линейка опиралась на книги, победить линейку нам не удалось и мы своим пальцем чувствовали, как линейка упиралась, но не прогнулась ни на миллиметр. Причем, чем сильнее мы давили на линейку, тем сильнее она упиралась, при этом сила, с которой мы давили на линейку была сравнима с силой отпора.

В реальном мире все очень сложно – любое вещество, даже очень простое, устроено очень непонятно. Одни вещества состоят из атомов, соединенных в кристаллическую решетку, при этом материал может быть монокристаллическим или поликристаллическим. В других веществах атомы входят в состав молекул, которые могут быть и простыми и очень сложными.

https://www.youtube.com/watch?v=https:accounts.google.comServiceLogin

Но между всеми этими атомами или молекулами существует строгая связь. Все эти атомы и молекулы держатся на определенном природой расстоянии и когда мы давим пальцем на линейку, то мы пытаемся уменьшить расстояние между атомами или молекулами, а молекулы да атомы этого не хотят и сопротивляются, говоря научным языком возникает напряжение, т.е. расстояние между атомами или молекулами уменьшается, но если палец убрать, то атомы и молекулы вернутся на свои места.

Мало того, когда мы давим на линейку, деформации возникают не только в веществе линейки, но и книги, в том месте где на книгу опирается линейка , в веществе стола, на котором лежат книги и так далее, до самого земного ядра. Кстати говоря, для некоторых веществ термин напряжение можно понимать буквально – этот эффект положен в основу работы пьезоэлементов, но не будем отвлекаться.

Так вот когда мы давим пальцем на линейку в точке опоры, то часть энергии переходит в упругие деформации, часть в неупругие деформации, часть в нагрев вещества, еще какая-то часть в звуковые колебания и так далее, одним словом процесс сложный, но вот за что я люблю строительную механику, так это за то, что в строймехе все просто, потому как строительная механика придумана не для того, чтобы усложнять нам жизнь, а чтобы жизнь и, в частности, расчет строительных конструкций, упрощать.

В строительной механике этот сложный комплекс событий называется реакцией опоры. Считается, что когда мы прикладываем силу (сосредоточенную нагрузку) на опоре (см. рис.4.1), то возникает реакция опоры, численно равная приложенной нагрузке и направленная противоположно – красота! Таким образом, если мы приложили на опоре нагрузку 1 Ньютон, то на опоре возникает реакция тоже 1 Ньютон, при этом на второй опоре никакой нагрузки нет, поэтому и реакция опоры равна 0.

Такое допущение позволяет заменить опоры, точнее опорные связи, реактивными силами – реакциями опор. Для простоты восприятия можно измерять силы в килограмм-силах, 1 кгс ≈ 10 Н (если быть более точным, то 1 кгс = 9.81 Н). И теперь, если рассматривать балку висящей в воздухе, то для того, чтобы балка не падала, другими словами находилась в состоянии статического равновесия, достаточно в одной точке приложить к балке две равные по значению, но противоположно направленные силы.

Рисунок 4.1. Замена опорных связей реактивными силами – опорными реакциями.

(вернуться к основному содержанию)

Рисунок 5.2. Графическое отображение изменения реакций опор в зависимости от расстояния приложения нагрузки.

Рисунок 5.3. Графическое определение реакций опор.

Например, расстояние между книгами 20 см. Это значит, что расстояние между опорами (пролет нашей балки) – 20 см, а в общем случае l. Длина балки измеряется по оси х. Если приложить сосредоточенную нагрузку на некотором расстоянии от левой опоры, обозначим его литерой а, то значение реакции левой опоры будет равно длине отрезка, проведенного перпендикулярно длинному катету синего треугольника, а значение реакции правой опоры – это длина отрезка, проведенного перпендикулярно длинному катету красного треугольника. В сумме они составляют единицу, так как мы принимали значение нагрузки равное 1.

Rпр = В = Qа/l (4.1)

Rлев = А = Q(l – а)/l (4.2)

Конечно при расчетах все пользуются формулами, но наглядность треугольников нам еще пригодится.

При определении реакции опор от действия распределенной нагрузки, сначала определяется равнодействующая сила, т.е. распределенная нагрузка сводится к сосредоточенной, а потом определяются реакции опор в зависимости от точки приложения сосредоточенной нагрузки. Если распределенная нагрузка является равномерно распределенной и приложена по всей длине балки, то реакции опор будут А = В = ql/2. Как определить реакции опор в других случаях, надеюсь, станет понятно из дальнейшего описания.

https://www.youtube.com/watch?v=ytcreatorsru

Рисунок 219.3. Замена защемления на опорах шарнирными опорами

Для того, чтобы защемление считалось жестким, значение l’ должно быть значительно меньше l или стержень на участках АА’ и ВВ’ должен быть абсолютно жестким, при соблюдении одного из этих условий угол поворота поперечного сечения балки в точках А и В будет равен 0 или стремиться к 0. В реальности первое условие выполнимо, только если наша балка будет на опоре приварена (для металлических каркасов) или приварена и забетонирована (для железобетонных каркасов), причем не на глаз, а согласно расчету.

Или нагрузка сверху и снизу на опорные участки балки l’ будет значительно больше, чем нагрузка на балку, например при достаточном защемлении железобетонной плиты перекрытия между кирпичами стены. Но и этого мало. Такая балка, защемленная на двух опорах (рисунок 1.б) или имеющая 6 опорных стержней (рисунок 3), является трижды статически неопределимой балкой, со всеми вытекающими отсюда последствиями.

Ну и главное отличие жестко защемленной опоры от шарнирной: угол поворота поперечного сечения балки (стержня) на жестко защемленной опоре всегда равен 0 вне зависимости от того, где и как приложена нагрузка, а на шарнирных опорах угол наклона поперечного сечения как правило максимальный. Это и дает в итоге столь ощутимую в конечном счете разницу значений прогибов.

Перемычка над проемом в кирпичной стене имеет опорные участки некоторой длины, к перемычке приложена равномерно распределенная нагрузка, проще говоря, на перемычку опирается кирпич. Такую перемычку можно условно рассматривать как двухконсольную балку на двух шарнирных опорах с равномерно распределенной нагрузкой.

Требуется подобрать длину консолей так, чтобы изгибающий момент на опорах был равен максимальному моменту в пролете. Задача, не смотря на всю сложность формулировки, очень проста. Так как для безконсольной балки на двух шарнирных опорах максимальный изгибающий момент будет равен ql2/8, то для консольной балки с таким же пролетом l нам необходимо подобрать такую длину l’, чтобы соблюдалось условие Мmax дляпролета = Мна опорах = ql2/16.

Почему так, здесь объяснять не буду, поверьте на слово (впрочем, по просьбам учащихся я написал отдельную статью об особенностях расчета косольных балок с симметрично загруженными консолями). Таким образом момент на опоре от распределенной нагрузки будет ql2/16 = ql’2/2. Следовательно длина опорных участков перемычки должна составлять

l’ = l /(√8) ≈ 0.3535l

Например для перемычки, укладываемой над пролетом длиной 2 метра, длина одного опорного участка должна составлять не менее 0.7 м, а суммарная длина опорных участков должна составлять не менее 1.4 м, чтобы перемычку можно было рассчитывать как двухконсольную балку на двух шарнирных опорах. И если для перемычки над двухметровым пролетом такая длина опорного участка – это много, то для перемычки над проемом в 1 метр длина опорных участков в 36 см уже не кажется такой большой по сравнению с минимально требуемой в 25 см и таким образом иногда можно подобрать такие размеры перемычки, которые позволят чуть ли не в 2 раза сэкономить на материалах. Тут есть свои особенности, которые при расчетах необходимо учитывать:

  • Увеличение длины опорных участков будет приводить к увеличению момента на опорах и балка будет приближаться с жестко защемленной на опорах;
  • Уменьшение длины опорных участков будет приводить к увеличению момента в пролете и балка будет приближаться к бесконсольной шарнирно опертой;
  • Нагрузка, принимаемая нами, как равномерно распределенная, на самом деле таковой не является, кроме того при сведении объемной нагрузки к плоской плоскость приложения такой нагрузки далеко не всегда будет совпадать с плоскостью, проходящей через центры тяжести сечений.

Определение угла поворота через прогиб.

Рисунок 11.1. Перемещение центра тяжести поперечного сечения балки в центре балки и угол поворота продольной оси, проходящей через центр тяжести поперечного сечения, на одной из опор.

Фотография 1.

Но попробуем прийти к тому же результату, следуя по тернистому пути теории сопромата.

Так как балка прогнулась (в хорошем значении этого слова), получается, что и продольная ось, проходящая через центры тяжести поперечных сечений всех точек балки, и до приложения нагрузки совпадавшая с осью х, сместилась. Это смещение центра тяжести поперечного сечения по оси у называется прогибом балки f.

Кроме того, очевидно, что на опоре эта самая продольная ось теперь находится под некоторым углом θ к оси х, а в точке действия сосредоточенной нагрузки угол поворота = 0, так как нагрузка у нас приложена посредине и балка прогнулась симметрично. Угол поворота принято обозначать “θ”, а прогиб “f” (во многих справочниках по сопромату прогиб обозначается как “ν”, “w” или любыми другими литерами, но нам, как практикам, удобнее использовать обозначение “f”, принятое в СНиПах).

Как определить этот самый прогиб мы пока не знаем, но зато мы знаем, что нагрузка, действуя на балку, создает изгибающий момент. А изгибающий момент создает внутренние нормальные сжимающие и растягивающие напряжения в поперечных сечениях балки. Эти самые внутренние напряжения приводят к тому, что в верхней части балка сжимается, а в нижней растягивается, при этом длина балки по оси, проходящей через центры тяжести поперечных сечений остается такой же, в верхней части длина балки уменьшается, а в нижней части увеличивается, причем чем дальше расположены точки поперечных сечений от продольной оси, тем больше будет деформация. Определить эту самую деформацию мы можем используя еще одну характеристику материала – модуль упругости.

E = R/Δ (11.1.1)

E ≥ N/ΔS (11.1.2)

в нашем случае балка имеет прямоугольное сечение, поэтому S = b·h, где b – ширина балки, h – высота балки.

Измеряется модуль Юнга в Паскалях или кгс/м2. Для абсолютного большинства строительных материалов модули упругости определены эмпирическим путем, узнать значение модуля для того или иного материала можно по справочнику или сводной таблице.

Рисунок 507.10.1

Δ = Q/(S·Е) (11.2.1) или Δ = q·h/(S·Е) (11.2.2)

Δl = Q·l/(b·h·Е) (11.2.3) или Δl = q·h·l/(b·h·Е) (11.2.4)

Рисунок 149.8.3 

Δх = M·х/((h/3)·b·(h/2)·Е) (11.3.1)

Δх = M·х/(W·Е) (11.3.2)

так как W = b·h2/6 (10.6)

https://www.youtube.com/watch?v=ytcopyrightru

W ≥ М / R (10.3)

W = М / ΔЕ (11.4.1)

М = WΔЕ (11.4.2) a Δ = M/(W·Е) (11.4.5) и соответственно Δх = M·х/(W·Е) (11.3.2)

Рисунок 11.2. Предполагаемая (для наглядности) деформация балки

tgφ = Δх/(h/2) (11.5.1)

и тогда

tgφ = 2 M·х/(h·W·Е) (11.5.3)

W = I/(h/2) (10.7) или I = W·h/2 (10.7.2)

tgφ = M·х/(I·Е) (11.5.4)

хотя делать это было не обязательно, но таким образом мы получили формулу угла поворота почти такой, как она дается во всех учебниках и справочниках по сопромату. Главное отличие в том, что обычно речь идет о угле поворота, а не о тангенсе угла. И хотя при малых деформациях значения тангенса угла и угол сопоставимы, но тем не менее угол и тангенс угла – это разные вещи (впрочем в некоторых справочниках, например: Фесик С.П.

Рассчитываемые элементы далеко не всегда имеют прямоугольное сечение, как наша рассматриваемая линейка. В качестве балок и перемычек могут использоваться различные горячекатаные профили, тесанные и не тесанные бревна и вообще все, что угодно. Тем не менее понимание принципов расчета момента инерции позволяет определить момент инерции для поперечного сечения любой, даже очень сложной геометрической формы.

В абсолютном большинстве случаев вычислять самому момент инерции нет необходимости, для металлических профилей сложного сечения (уголки, швеллера, двутавры и др.) момент инерции, как впрочем и момент сопротивления определяется по сортаменту. Для элементов круглого овального, треугольного сечения и некоторых других видов сечения определить момент инерции можно по соответствующей таблице.

Рисунок 11.3.

https://www.youtube.com/watch?v=ytdevru

tgθ = M·х/(2IЕ) (11.5.5)

Уравнения изгибающего момента, третье уравнение статического равновесия системы

1. При всяком воздействии одного тела на другое тело в другом теле возникает противодействие, равное по значению воздействию, но направленное противоположно. В данном случае противодействие – это реакция опоры.

2. Механическое состояние тела не изменится, если освободить тело от связей и приложить к тем же точкам тела силы, равные действовавшим на них силам реакций связей. В данном случае мы заменили опоры опорными реакциями.

3. Если тело под воздействием системы сил находится в состоянии равновесия (покоя) или продолжает двигаться с постоянной скоростью, то такая система сил, является уравновешенной.

∑у = Q – Rлев – Rпр = 0 (5.1) – для сил, действующих вдоль оси у.

∑х = 0 (5.2) – для сил (которых в данном случае нет), действующих вдоль оси х.

Примечание: так как горизонтальных сил в данном случае нет, то и горизонтальная опорная реакция RHлев = 0, при замене опорных связей на реактивные силы не показана для упрощения восприятия.

4. Две силы, приложенные к некоему телу, считаются уравновешенными тогда и только тогда, когда они равны по величине и действуют по одной прямой в противоположные стороны.

5. Не нарушая равновесного состояния тела, к нему можно приложить или отнять от него любую уравновешенную систему сил.

Если мы положим 20 см линейку на книги и надавим пальцем посредине, то линейка прогнется на некоторое расстояние, если мы возьмем 40 см линейку такого же сечения и из такого же материала, обопрем ее на книги, уложенные на расстоянии 40 см, и приложим к линейке точно такую же нагрузку, то расстояние, на которое прогнется линейка, будет больше, в чем же дело? ведь ни нагрузка, ни материал балки, ни сечение балки не изменились, изменилась только длина балки.

https://www.youtube.com/watch?v=ytpolicyandsafetyru

Строительная механика это чудо объясняет так: силы, действующие на балку, это одно, а вот изгибающий момент, возникающий в рассматриваемом поперечном сечении при действии силы – это совсем другое.

Все мы помним Архимеда и его радость при открытии принципа рычага, так вот этот принцип действует везде, суть его сводится к следующему: чем больше рычаг, тем меньшую силу можно приложить для совершения одной и той же работы.

В теоретической и строительной механике используется понятие плечо силы, как более корректное, таким образом считается, что внутренние напряжения, возникающие в поперечном сечении балки под действием нагрузки, прямо пропорциональны плечу действующей силы. А это значит, что реакции опоры – это силы которые пытаются изогнуть балку, при этом точка опоры рычага – это наша сосредоточенная нагрузка.

М = Ах (0≤ х < a) (6.1)

М = Ах – Q(x – a)  (a ≤ x < l) (6.2)

МB = Аl – Q(l – a) В(l – l) (x = l) (6.3)

ΣМВ = Al – Q(l – a) = 0 (6.4)

Метод сечений

Такой подход позволяет нам при решении задач рассматривать не всю балку, а только ее часть, заменив отсутствующую часть парой сил, действующих на поперечное сечение балки. Так, например, мы могли бы не рассматривать всю балку (рисунок 7.2), а только правую половину, заменив левую половину моментом или парой сил.

А если в рассматриваемом поперечном сечении действуют касательные напряжения, определяемые по эпюре поперечных сил, и(или) нормальные напряжения, определяемые по эпюре нормальных сил, то для того, чтобы отсеченная часть балки находилась в равновесии, мы должны все эти нагрузки приложить к рассматриваемому поперечному сечению.

В этом и состоит суть метода сечений:

  • При решении задач мы рассматриваем не всю балку, а только ее часть, отсеченную поперечным сечением.
  • Чтобы эта часть оставалась в состоянии статического равновесия, мы должны приложить в рассматриваемом поперечном сечении внешние силы.
  • Внутренние напряжения, возникающие в рассматриваемом поперечном сечении – это реакция материала на действие внешних сил.

Таким образом, решая перечисленные выше уравнения, мы определяем значения внешнего изгибающего момента и теперь пришло время узнать, какой же будет на это реакция материала.

Рисунок 8.3. Изменение распределенной нагрузки по высоте балки.

https://www.youtube.com/watch?v=ytadvertiseru

Почему распределение нормальных напряжений по высоте поперечного сечения балки имеет такой странный вид, мы сейчас и узнаем.