Гидравлический расчет тепловых сетей онлайн

Расчет пропускной способности труб.

Вид жидкости

Скорость (м/сек)

Вода городского водопровода

0,60-1,50

Вода трубопроводной магистрали

1,50-3,00

Вода системы центрального отопления

2,00-3,00

Вода напорной системы в линии трубопровода

0,75-1,50

Гидравлическая жидкость

до 12м/сек

Масло линии трубопровода

3,00-7,5

Масло в напорной системе линии трубопровода

0,75-1,25

Пар в отопительной системе

20,0-30,00

Пар системы центрального трубопровода

30,0-50,0

Пар в отопительной системе с высокой температурой

50,0-70,00

Воздух и газ в центральной системе трубопровода

20,0-75,00

Чаще всего, в качестве теплоносителя используется обычная вода. От ее качества зависит скорость уменьшения пропускной способности в трубах. Чем выше качество теплоносителя, тем дольше прослужит трубопровод из любого материала (сталь чугун, медь или пластик).

Для точных и профессиональных расчетов необходимо использовать следующие показатели:

  • Материал, из которого изготовлены трубы и другие элементы системы;
  • Длина трубопровода
  • Количество точек водопотребления (для системы подачи воды)

1. Формула. Достаточно сложная формула, которая понятна лишь профессионалам, учитывает сразу несколько значений. Основные параметры, которые принимаются во внимание – материал труб (шероховатость поверхности) и их уклон.

2. Таблица. Это более простой способ, по которому каждый желающий может определить пропускную способность трубопровода. Примером может послужить инженерная таблица Ф. Шевелева, по которой можно узнать пропускную способность, исходя из материала трубы.

Длина трубопровода – важный показатель при расчете пропускной способности Протяженность магистрали оказывает существенное влияние на показатели пропускной способности. Чем большее расстояние проходит вода, тем меньшее давление она создает в трубах, а значит, скорость потока уменьшается.

Приводим несколько примеров. Опираясь на таблицы, разработанные инженерами для этих целей.

Пропускная способность труб:

  • 0,182 т/ч при диаметре 15 мм
  • 0,65 т/ч с диаметром трубы 25 мм
  • 4 т/ч при диаметре 50 мм

Как можно увидеть из приведенных примеров, больший диаметр увеличивает скорость потока. Если диаметр увеличить в 2 раза, то пропускная способность тоже возрастет. Эту зависимость обязательно учитывают при монтаже любой жидкостной системы, будь то водопровод, водоотведение или теплоснабжение. Особенно это касается отопительных систем, так как в большинстве случаев они являются замкнутыми, и от равномерной циркуляции жидкости зависит теплоснабжение в здании.

Значения коэффициентов эквивалентной шероховатости ∆ для труб из различных материалов.

Табл. 2

Группа

Материалы, вид и состояние трубы

∆*10-2. мм

1. Давленые или тянутые трубы

Давленые или тянутые трубы (стеклянные, свинцовые, латунные, медные. цинковые. Оловянные, алюминиевые, никелированные и пр.)

0.10

2. Стальные трубы

Бесшовные стальные трубы высшего качества изготовления

1.0

Новые и чистые стальные трубы

6.0

Стальные трубы, не подверженные коррозии

15.0

Стальные трубы, подверженные коррозии

20.0

Стальные трубы сильно заржавевшие

200

Очищенные стальные трубы

17

3. Чугунные трубы

Новые черные чугунные трубы

25

Обыкновенные водопроводные чугунные трубы, б /у

100

Старые заржавленные чугунные трубы

150

Очень старые, шероховатые. заржавленные чугунные трубы с отложениями

250

4. Бетонные, каменные и асбоцементные трубы

Новые асбоцементные трубы

4

Очень тщательно изготовленные трубы из чистого цемента

15

Обыкновенные чистые бетонные трубы

50

Табл. 3

Режим (зона)

Границы

Коэффициент гидравлического сопротивления l

Ламинарный

Reкр(Reкр»2320)

64/Re (форм. Стокса)

Турбулентный:

1.

Зона перехода турбулентного движения в ламинарное

2000

2.7/Re0.53 (форм. Френкеля)

2.

Зона гидравлически гладких труб

Reкр < Re<10 d/D

0.3164/Re0.25 (форм. Блазиуса)

1/(1.8 lg Re – 1.5)2 (фор.Конакова при Re<3*106)

3.

Зона смешанного трения или гидравлически шероховатых труб

10 d/D

0.11 (68/Re D/d)0.25 (форм. Альтшуля)

4.

Зона квадратичного сопротивления (вполне шероховатого трения)

Re>500 d/D

 1/(1.14 2lg(d/D))2 (форм. Никурадзе)

0.11(D/d)0.25 (форм. Шифринсона)

  • ∆ – абсолютная шероховатость трубы.
  • d. r – диаметр. радиус трубы. соответственно.
  • ∆/d – относительная шероховатость трубы.

Основные формулы для ламинарного режима в трубах.

Табл. 4

Форма поперечного сечения

Гидравлический радиус. Rг

Число РейнольдаRe

Коэффициент гидравлического сопротивления

Потери напора. h

гидравлический расчет трубопроводов

D/4

vD/n

64/Re

128νQL/πgD4.

гидравлический расчет трубопроводов

(D-d)/4

v(D-d)/n

64/Re*(1 – d/D)2/(1 (d/D)2 (1 – (d/D)2)/ln(d/D))

128νQL/πg(D4 – d4 (D2 – d2)2/ln(d/D)).

гидравлический расчет трубопроводов

a/4√3

va/ν√3

160/(3Re)

320νQL/ga4√3

гидравлический расчет трубопроводов

ab/(a b)

4vab/((a b)ν)

64/Re*8(a/b)/((1 a/b)2K)

4νQL/a2b2gK. 
Коэффициент K определяется в зависимости от отношенияa/b (смотрите в таблице)

Табл. 5

a/b

1.0

1.25

2.0

4.0

10.0

¥

K

2.249

2.198

1.830

1.123

0.5

0

Коэффициенты некоторых местных сопротивлений z.

Табл. 6

Вид местного сопротивления

Схема

Коэффициент местного сопротивления z

Внезапное расширение

гидравлический расчет трубопроводов

(1 – S1/S2)2, S1 = πd2/4, S2 = πD2/4.

Выход из трубы в резервуар больших размеров

гидравлический расчет трубопроводов

1

Постепенное расширение (диффузор)

гидравлический расчет трубопроводов

  1. Если a<80.

0.15 – 0.2 ((1 – (S1/S2)2)

  1. Если 80.

sin α (1 – S1/S2)2

  1. Если a>300

(1 – S1/S2)2

Вход в трубу:

С острыми краями

гидравлический расчет трубопроводов

0.5

С закругленными краями

гидравлический расчет трубопроводов

0.2-0.1 (в зависимости от радиуса закругления)

С выступающими острыми краями

гидравлический расчет трубопроводов

1

В виде конического патрубка

гидравлический расчет трубопроводов

0.15

Внезапное сужение:

гидравлический расчет трубопроводов

ζ/ɛп (1/ ɛп – 1)2. z=0.005-0б06

eп= 0.62-0.63 (вход с острыми краями)

eп=0.7-0.99 (вход с закругленными краями.

По данным ЦАГИ коэффициент местного сопротивления при внезапном сужении определяется зависимостью:

0.5 (1- S1/S2)

гидравлический расчет трубопроводов

1 – S1/S2

Поворот струи

Закругление

гидравлический расчет трубопроводов

0.14-0.3  (d/r =0.4-1 при j=900)

z×j/900 (при j¹90)

Прямое колено

гидравлический расчет трубопроводов

1-1.5

Постепенное сужение (конфузор)

гидравлический расчет трубопроводов

0.005-0.06 (a<50)

0.16-0.24 (70 < <300)

Вентили и задвижки (при полном открытии)

Обыкновенный проходной вентиль

гидравлический расчет трубопроводов

3-5.5

Задвижка

гидравлический расчет трубопроводов

0.12

Диафрагма

гидравлический расчет трубопроводов

(1 0.707/(1- S1/S2))2*( S1/S2 – 1)2

Коэффициент сопротивления диафрагмы можно также определить в зависимости от отношения площади поперечного сечения трубы S2 к площади отверстия диафрагмы S1.

Коэффициент сопротивления диафрагмы.

Табл. 3

Табл. 7

S2/S1

0.05

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

z

1070

245

51.0

18.4

8.2

4.0

2.0

0.97

0.41

0.13

0

Зависимость коэффициента гидравлического сопротивления от числа Рейнольдса и эквивалентной шероховатости труб.

Табл. 3

Это третий этап в процессе создания тепловой сети. Он представляет собой систему вычислений, позволяющих определить:

  • диаметр и пропускную способность труб;
  • местные потери давления на участках;
  • требования гидравлической увязки;
  • общесистемные потери давления;
  • оптимальный расход воды.

Согласно полученным данным осуществляют подбор насосов.

Для сезонного жилья, при отсутствии в нём электричества, подойдёт система отопления с естественной циркуляцией теплоносителя (ссылка на обзор).

Основная цель гидравлического расчёта — обеспечить совпадение расчётных расходов по элементам цепи с фактическими (эксплуатационными) расходами. Количество теплоносителя, поступающего в радиаторы, должно создать тепловой баланс внутри дома с учётом наружных температур и тех, что заданы пользователем для каждого помещения согласно его функциональному назначению (подвал 5, спальня 18 и т.д.).

Комплексные задачи — минимизация расходов:

  1. капитальных – монтаж труб оптимального диаметра и качества;
  2. эксплуатационных:
    • зависимость энергозатрат от гидравлического сопротивления системы;
    • стабильность и надёжность;
    • бесшумность.
Автономное отопление

Замена централизованного режима теплоснабжения индивидуальным упрощает методику вычислений

Для автономного режима применимы 4 метода гидравлического расчёта системы отопления:

  1. по удельным потерям (стандартный расчёт диаметра труб);
  2. по длинам, приведённым к одному эквиваленту;
  3. по характеристикам проводимости и сопротивления;
  4. сопоставление динамических давлений.

пропускная способность трубопровода

Два первых метода используются при неизменном перепаде температуры в сети.

Два последних помогут распределить горячую воду по кольцам системы, если перепад температуры в сети перестанет соответствовать перепаду в стояках/ответвлениях.

Расчет гидравлики системы отопления

Нам потребуются данные теплового расчёта помещений и аксонометрической схемы.

Аксонометрическая схема

Аксонометрическая схема

№ расчётного участка Тепловая нагрузка Длина
записать записать записать

1а. Оптимальная разница между горячим (tг) и охлаждённым( tо) теплоносителем для двухтрубной системы – 20º

1б. Расход теплоносителя G, кг/час — для однотрубной системы.

2. Оптимальная скорость движения теплоносителя – ν 0,3-0,7 м/с.

Гидравлический расчет тепловых сетей онлайн

Чем меньше внутренний диаметр труб — тем выше скорость. Достигая отметки 0,6 м/с, движение воды начинает сопровождаться шумом в системе.

3. Расчётная скорость теплопотока – Q, Вт.

Формула для Q

Формула для расчёта скорости теплопотока

4. Расчетная плотность воды: ρ = 971,8 кг/м3 при tср = 80 °С

Участок Длина участка, м Число приборов N, шт
1 – 2 1.78 1
2 – 3 2.60 1
3 – 4 2.80 2
4 – 5 2.80 2
5 – 6 2.80 4
6 – 7 2.80
7 – 8 2.20
8 – 9 6.10 1
9 – 10 0.5 1
10 – 11 0.5 1
11 – 12 0.2 1
12 – 13 0.1 1
13 – 14 0.3 1
14 – 15 1.00 1

удобно пользоваться таблицей.

Ø 8 Ø 10 Ø 12 Ø 15 Ø 20 Ø 25 Ø 50
ν Q G v Q G v Q G v Q G v Q G v Q G v Q G
0.3 1226 53 0.3 1916 82 0.3 2759 119 0.3 4311 185 0.3 7664 330 0.3 11975 515 0.3 47901 2060
0.4 1635 70 0.4 2555 110 0.4 3679 158 0.4 5748 247 0.4 10219 439 0.4 15967 687 0.4 63968 2746
0.5 2044 88 0.5 3193 137 0.5 4598 198 0.5 7185 309 0.5 12774 549 0.5 19959 858 0.5 79835 3433
0.6 2453 105 0.6 3832 165 0.6 5518 237 0.6 8622 371 0.6 15328 659 0.6 23950 1030 0.6 95802 4120
0.7 2861 123 0.7 4471 192 0.7 6438 277 0.7 10059 433 0.7 17883 769 0.7 27942 1207 0.7 111768 4806

Обзор программ

Для удобства расчётов применяются любительские и профессиональные программы вычисления гидравлики.

Самой популярной является Excel.

Можно воспользоваться онлайн-расчётом в Excel Online, CombiMix 1.0, или онлайн-калькулятором гидравлического расчёта. Стационарную программу подбирают с учётом требований проекта.

Главная трудность в работе с такими программами — незнание основ гидравлики. В некоторых из них отсутствуют расшифровки формул, не рассматриваются особенности разветвления трубопроводов  и вычисления сопротивлений в сложных цепях.

Таблица диаметров трубопроводов

Особенности программ:

  • HERZ C.O. 3.5 – производит расчёт по методу удельных линейных потерь давления.
  • DanfossCO и OvertopCO – умеют считать системы с естественной циркуляцией.
  • «Поток» (Potok) — позволяет применять метод расчёта с переменным (скользящим) перепадом температур по стоякам.

Следует уточнять параметры ввода данных по температуре — по Кельвину/по Цельсию.

Как работать в EXCEL

Использование таблиц Excel очень удобно, поскольку результаты гидравлического расчёта всегда сводятся к табличной форме. Достаточно определить последовательность действий и подготовить точные формулы.

Выбирается ячейка и вводится величина. Вся остальная информация просто принимается к сведению.

Ячейка Величина Значение, обозначение, единица выражения
D4 45,000 Расход воды G в т/час
D5 95,0 Температура на входе tвх в °C
D6 70,0 Температура на выходе tвых в °C
D7 100,0 Внутренний диаметр d, мм
D8 100,000 Длина, L в м
D9 1,000 Эквивалентная шероховатость труб ∆ в мм
D10 1,89 Сумма коэф. местных сопротивлений – Σ(ξ)

Пояснения:

  • значение в D9 берётся из справочника;
  • значение в D10 характеризует сопротивления в местах сварных швов.

Формулы и алгоритмы

Выбираем ячейки и вводим алгоритм, а также формулы теоретической гидравлики.

Ячейка Алгоритм Формула Результат Значение результата
D12 !ERROR! D5 does not contain a number or expression tср=(tвх tвых)/2 82,5 Средняя температура воды tср в °C
D13 !ERROR! D12 does not contain a number or expression n=0,0178/(1 0,0337*tср 0,000221*tср2) 0,003368 Кинематический коэф. вязкости воды – n, cм2/с при tср
D14 !ERROR! D12 does not contain a number or expression ρ=(-0,003*tср2-0,1511*tср 1003, 1)/1000 0,970 Средняя плотность воды ρ,т/м3 при tср
D15 !ERROR! D4 does not contain a number or expression G’=G*1000/(ρ*60) 773,024 Расход воды G’, л/мин
D16 !ERROR! D4 does not contain a number or expression v=4*G:(ρ*π*(d:1000)2*3600) 1,640 Скорость воды v, м/с
D17 !ERROR! D16 does not contain a number or expression Re=v*d*10/n 487001,4 Число Рейнольдса Re
D18 !ERROR! Cell D17 does not exist λ=64/Re при Re≤2320
λ=0,0000147*Re при 2320≤Re≤4000
λ=0,11*(68/Re ∆/d)0,25 при Re≥4000
0,035 Коэффициент гидравлического трения λ
D19 !ERROR! Cell D18 does not exist R=λ*v2*ρ*100/(2*9,81*d) 0,004645 Удельные потери давления на трение R, кг/(см2*м)
D20 !ERROR! Cell D19 does not exist dPтр=R*L 0,464485 Потери давления на трение dPтр, кг/см2
D21 !ERROR! Cell D20 does not exist dPтр=dPтр*9,81*10000 45565,9 и Па соответственно
D20
D22 !ERROR! D10 does not contain a number or expression dPмс=Σ(ξ)*v2*ρ/(2*9,81*10) 0,025150 Потери давления в местных сопротивлениях dPмс в кг/см2
D23 !ERROR! Cell D22 does not exist dPтр=dPмс*9,81*10000 2467,2 и Па соответственно D22
D24 !ERROR! Cell D20 does not exist dP=dPтр dPмс 0,489634 Расчетные потери давления dP, кг/см2
D25 !ERROR! Cell D24 does not exist dP=dP*9,81*10000 48033,1 и Па соответственно D24
D26 !ERROR! Cell D25 does not exist S=dP/G2 23,720 Характеристика сопротивления S, Па/(т/ч)2

Пояснения:

  • значение D15 пересчитывается в литрах, так легче воспринимать величину расхода;
  • ячейка D16 — добавляем форматирование по условию: «Если v не попадает в диапазон 0,25…1,5 м/с, то фон ячейки красный/шрифт белый».

Для трубопроводов с перепадом высот входа и выхода к результатам добавляется статическое давление: 1 кг/см2 на 10 м.

Пропускная способность трубопровода

Авторское цветовое решение несёт функциональную нагрузку:

  • Светло-бирюзовые ячейки содержат исходные данные – их можно менять.
  • Бледно-зелёные ячейка — вводимые константы или данные, мало подверженные изменениям.
  • Жёлтые ячейки — вспомогательные предварительные расчёты.
  • Светло-жёлтые ячейки — результаты расчётов.
  • Шрифты:
    • синий — исходные данные;
    • чёрный — промежуточные/неглавные результаты;
    • красный — главные и окончательные результаты гидравлического расчёта.
Результаты в excel

Результаты в таблице Эксель

Пример несложного гидравлического расчёта в программе Excel для горизонтального участка трубопровода.

Исходные данные:

  • длина трубы100 метров;
  • ø108 мм;
  • толщина стенки 4 мм.
Excel

Таблица результатов расчёта местных сопротивлений

Усложняя шаг за шагом расчёты в программе Excel, вы лучше осваиваете теорию и частично экономите на проектных работах. Благодаря грамотному подходу, ваша система отопления станет оптимальной по затратам и теплоотдаче.