Как осуществляется контроль качества сварки швов и сварных соединений

Организация контроля сварных швов

1.3.1. При разработке проекта
производства работ (ППР) по монтажу металлоконструкций зданий должны быть
учтены и отражены условия сборки конструкций под сварку, сварка и контроль
сварных соединений.

В ППР должна быть заложена
наиболее прогрессивная технология сборочно-сварочных работ с оптимальным
уровнем механизации.

СНиП III-4-80. Техника
безопасности в строительстве;

ГОСТ 12.3.003.
Система стандартов безопасности труда. Работы электросварочные. Требования
безопасности;

«Правил устройства
электроустановок»;

«Правил технической
эксплуатации электроустановок потребителей»;

«Правил техники безопасности
при эксплуатации электроустановок потребителей»;

«Санитарных правил при
проведении рентгеновской дефектоскопии», № 2191-80;

«Санитарных правил при
радиоизотопной дефектоскопии», № 1171-74;

Обязательная процедура

«Санитарных правил по
сварке, наплавке и резке металлов», № 1009-73;

«Правил пожарной безопасности
при проведении сварочных и других огневых работ на объектах народного
хозяйства»;

«Правил пожарной
безопасности при производстве строительно-монтажных работ. ППБ
05- 86».

применения исправного
оборудования;

использования сварочных
материалов надлежащего качества, прошедших соответствующий контроль;

выполнения технологических
требований по сборке и сварке изделий, регламентированных ПТД;

выполнения операционного
контроля процессов сборки и сварки;

своевременного выполнения
контроля качества готовых сварных соединений.

Проверка сварных швов на дефекты

1.3.4. Применение основных
материалов (листов, профильного проката) и сварочных материалов (электродов,
сварочной проволоки и флюсов), отличающихся от указанных в
производственно-технологической документации (ПТД), может быть допущено по
совместному техническому решению организации-разработчика ПТД, отраслевой
специализированной организации и организации – производителя работ.

1.3.5. Порядок сборки и
укрупнения монтажных блоков и последовательность работ должны обеспечивать
возможность применения наиболее прогрессивных методов сварки. Для обеспечения
надлежащего качества сварных соединений и повышения производительности труда
при выполнении работ по сборке, сварке и контролю качества сварных соединений
следует руководствоваться положениями, изложенными в настоящем разделе.

1.3.6. Способ сварки
металлоконструкций на разных этапах их укрупнения и монтажа должен быть
определен проектом производства работ (ППР).

целесообразность применения
механизированных способов сварки должна подтверждаться тех нико-экономическим расчетом;

автоматическую сварку под
флюсом следует применять при укрупнительной сборке конструкций для швов
значительной протяженности;

механизированная
(полуавтоматическая) сварка самозащитной порошковой проволокой может быть
применена при укрупнении и монтаже металлоконструкций для сварки швов в нижнем,
наклонном и вертикальном положениях;

механизированную
(полуавтоматическую) сварку в углекислом газе (проволокой сплошного сечения)
следует использовать для укрупнительной и монтажной сварки металлоконструкций в
любом положении шва при условии защиты места сварки от ветра.

В случаях, где не может быть
использована автоматическая и механизированная сварка, должна применяться
ручная дуговая сварка.

1.3.7. Численность инженерно-технических
работников по сварке и наладчиков оборудования для механизированной сварки на
строительно-монтажной площадке зависит от объема сварочных работ и числа
работающих сварщиков. Она устанавливается в соответствии с положением о службе
сварки строительно-монтажной организации.

1.3.8. Снабжение
укрупнительной площадки и территории монтируемого или реконструируемого здания
электропитанием для целей сварки следует выполнять с помощью разводок
электросварочного тока на все участки укрупнительной площадки и монтируемого
здания.

1.3.9. Сечение провода для
присоединения источника питания для сварки к сети следует подбирать по данным
табл. 1.1.
При ручной дуговой сварке электрододержатель соединяют со сварочной цепью
гибким медным проводом с резиновой изоляцией марок ПРД, ПРИ, КОГ 1, КОГ 2,
сечение которого необходимо выбирать в зависимости от сварочного тока: при токе
до 100 А – не менее 16 мм2, при 250 А – 25 мм2, при 300 А
– 50 мм2. Длина гибкого провода должна быть не менее 5 м.

Таблица 1.1

Сечение провода для подсоединения к сети источников сварочного тока

Максимальный сварочный ток источника
питания, А

Сечение медного* провода,
мм2, при напряжении сети, В

220

380

300

16

10

500

35

16

1000

70

50

2000

120

4000

240

*
Сечение алюминиевого провода должно быть в 1,5 раза больше.

1.3.10. При большом объеме
сборочно-сварочных работ снабжение сборочных площадок и сооружаемого здания
кислородом и горючим газом для резки следует осуществлять централизованным
путем с помощью разводок от центра питания к постам резки. Целесообразность
применения централизованной системы питания должна подтверждаться расчетом.

Как осуществляется контроль качества сварки швов и сварных соединений

Разводку кислорода и
горючего газа по зданию крупного промышленного объекта следует предусматривать в проекте
как постоянную систему газоснабжения, остающуюся после окончания строительства
для выполнения ремонтных работ в процессе эксплуатации объекта.

Централизованная разводка
газа по стройплощадке выполняется как временное газоснабжение в соответствии с
ППР.

1.3.11. В зависимости от
местных условий в качестве горючего газа для резки используется ацетилен,
пропан-бутан или природный горючий газ. Ацетилен для резки применяется лишь при
значительной удаленности строительства от нефтеперегонных заводов и
трубопроводов природного газа, когда технически невозможно или экономически
нецелесообразно использовать пропан-бутан или природный газ.

1.3.12. Снабжение
строительно-монтажных участков кислородом осуществляется от собственных
стационарных кислородных установок (типа КГН-30, 2КГ-30 и др.), либо от
газификационной станции, где жидкий кислород, доставляемый на объект в
железнодорожных или автомобильных цистернах, газифицируется и направляется по
газопроводу к рабочим местам или в кислородную рампу. Способ снабжения
кислородом зависит от местных условий и должен подтверждаться расчетом.

1.3.13. Снабжение сжиженным
пропан-бутаном должно осуществляться с помощью специальных автомобильных
цистерн завода-поставщика. На строительно-монтажных участках сооружаются подземные
резервуары, где хранится пропан-бутан; из резервуаров газифицированный
пропан-бутан подается к местам потребления.

1.3.14. Проектирование,
сооружение, испытание и эксплуатация трубопроводов кислорода и горючих газов
должны производиться в соответствии с «Правилами безопасности в газовом
хозяйстве» (Госгортехнадзор, 1992).

1.3.15. Свариваемые
поверхности конструкции и рабочее место сварщика должны быть ограждены от
дождя, снега, ветра и сквозняков.

Качественный шов

При температуре окружающего
воздуха ниже минус 10 °С необходимо иметь вблизи рабочего места сварщика
инвентарное помещение для обогрева, а при температуре ниже минус 40 °С сварка
должна производиться в обогреваемом тепляке, где температура должна быть выше 0
°С.

Сварочные материалы должны
храниться отдельно по маркам, партиям и диаметрам в условиях, предохраняющих их
от увлажнения и механических повреждений. Сварочный флюс должен храниться в
герметичной таре.

В складе должны быть
установлены печи для прокалки электродов, порошковой проволоки и флюса,
сушильные шкафы с температурой до 150 °С, обеспечивающие суточную потребность
участка в электродах и проволоке.

1.3.17. Прокаленные
электроды и порошковую проволоку следует выдавать на рабочее место в
количестве, необходимом для работы сварщика в течение одной смены.

При сварке конструкций из
сталей с пределом текучести более 390 МПа (40 кгс/мм2) электроды,
взятые непосредственно из прокалочной или сушильной печи, необходимо
использовать в течение двух часов.

Хранение и транспортировку
прокаленных сварочных материалов необходимо производить в закрытой таре:
электроды – в специальных металлических пеналах, в упаковке из
водонепроницаемой бумаги или в герметизированной оболочке из полиэтиленовой
пленки, порошковую проволоку – в закрытых жестяных банках или в упаковке из
водонепроницаемой бумаги.

1.3.18. Очистка и намотка
проволоки в кассеты для механизированных способов сварки должны производиться
на стационарном рабочем месте специально выделенным для этого рабочим. Все
кассеты с намотанной проволокой должны иметь этикетки с указанием марки и
диаметра проволоки.

1.3.19. Электросварщик для
допуска к работе должен иметь на рабочем месте следующий минимальный набор
инвентаря и инструмента: защитный щиток или маску, рукавицы, очки с прозрачными
стеклами, молоток, зубило или крейцмессель для отбивки шлака, стальную щетку,
личное клеймо, ящик или сумку для электродов с отделением для электродных
огарков, соответствующие шаблоны для проверки геометрии шва. Рабочее место
сварщика должно быть заранее подготовлено, очищено от посторонних предметов и
освещено.

Визуальный осмотр

1.3.20. Сварку деталей из
сталей с пределом текучести 345 МПа и более (С345 и выше) следует выполнять без
перерыва до заполнения хотя бы половины толщины шва или по всей его длине или
на участке длиной не менее 800-1000 мм (при длине шва более 1 м). При
вынужденных перерывах в работе необходимо обеспечить медленное и равномерное
охлаждение стыка любыми доступными средствами (например обкладкой стыка
листовым асбестом), а при возобновлении сварки стык должен быть подогрет до
температуры 120-160 °С.

1. Классификация видов технического контроля

К качеству сварных соединений предъявляются определенные требования, от выполнения которых зависят их пригодность к эксплуатации и гарантированный срок службы. Качество сварных соединений является комплексной характеристикой, включающей в себя совокупность показателей, с помощью которых оценивают их прочность, пластичность, коррозионную стойкость, износостойкость и другие свойства.

Нормативные значения этих показателей определяют требования к сварным соединениям, выполнение которых обеспечивается определенными конструктивными и технологическими характеристиками сварных швов. К конструктивным характеристикам относятся форма и геометрические параметры сварного шва, а к технологическим — уровень остаточных напряжений, размеры деформаций, размеры и число дефектов и т. п.

Контроль качества представляет собой проверку соответствия показателей качества установленным требованиям. В зависимости от требований, предъявляемых к сварным соединениям, и категории их ответственности устанавливается определенная система контроля качества продукции на предприятии. Основывается эта система на классификации видов технического контроля по отдельным признакам.

По стадиям технологического процесса различают контроль:

  • входной (предупредительный);
  • операционный (текущий);
  • приемосдаточный.

Входной контроль включает в себя проверку основного и сварочных материалов (присадочной проволоки, флюсов, газов, электродов), полуфабрикатов и комплектующих изделий, а также работоспособности сварочного оборудования и квалификации сварщиков. Операционный контроль выполняют в соответствии с технологической документацией изготовителя и нормативной технической документацией. Текущий контроль должен быть достаточным для оценки качества выполняемых операций.

Приемосдаточный контроль осуществляется в целях отделения годной продукции от бракованной.

Контроль сварных конструкций выполняют после их обработки в целом или после механической обработки сварных швов (если эти виды обработки производятся).

Влияние дефектов зависит не только от их размеров, но и от формы. К наиболее опасным дефектам относятся трещины, непровары и подрезы. Менее опасными дефектами являются поры. Промежуточное положение занимают включения. Все перечисленные виды дефектов характеризуются определенными значениями коэффициента концентрации напряжений. Опасность дефектов возрастает в следующем порядке: продолговатые поры, свищи, цепочки или скопления пор, линейные шлаковые или флюсовые включения.

Капиллярная дефектоскопия

В первую очередь контролю подвергают сварные швы в месте их взаимного пересечения и на участках с признаками дефектов. Методы и объемы контроля сварных соединений в узлах повышенной жесткости, где увеличивается вероятность образования трещин, должны дополнительно указываться в проектной документации.

Контроль качества сварных соединений, характеризующихся повышенной склонностью к образованию холодных трещин, следует производить не ранее чем через двое суток после окончания сварочных работ.

Выбор метода

На данный момент различают следующие неразрушающие методы:

  • внешний осмотр;
  • радиационный метод;
  • магнитное исследование;
  • ультразвуковой метод;
  • капиллярный метод;
  • контроль проницаемости.

Внешний осмотр

Любой контроль качества сварных соединений начинается с простого внешнего осмотра. Этого бывает достаточно, чтобы определить как наружные, так и внутренние пробелы, плюс отсутствует необходимость использовать оборудование неразрушающего контроля. Например, разная высота шва может свидетельствовать о непроварах в различных участках. Перед осмотром швы отчищаются от технологичных загрязнений, а именно – шлака, окалин и брызг металла.

Визуальный осмотр сварного шва

Чтобы мелкие недочеты стали виднее, проводится обработка поверхности спиртовым раствором, а затем 10%-ным раствором азотной кислоты. После данной процедуры поверхность приобретет матовость и покажет поры и трещины.

Осмотр – это основной способ выявить геометрические отклонения, такие как – поры, трещины, наплывы, подрезы. Более качественно провести данный пункт испытания можно с помощью дополнительных приборов.

Для этого лучше всего использовать лупу, а также более качественное освещение, желательно с мобильным источником света. Увеличительное стекло позволит обнаружить скрытые для глаза трещины и поры, а также проследить их путь. Для контроля ширины валиков, можно использовать измерительные приборы, вроде линейки или штангенциркуля.

Инструменты для визуально-измерительного контроля

Радиографический метод контроля сварных соединений существует в двух вариациях:

  • рентгеновское излучение;
  • гамма-излучение.

Простейший из представленных способ выявить погрешности сварного шва – просветить изделие рентгеновскими лучами. Они обладают свойством проникать сквозь металлические предметы, действуя при этом на фотопленку. Таким образом, полученный снимок – прямая карта большей части дефектов. С помощью проникающих лучей выявляют – шлаковые включения, газовые поры, смещения кромок, прожоги и другие пробелы.

Включения шлака на рентгеновском снимке

Перед началом работ, исследуемый участок и близ лежащая плоскость должны быть должным образом очищены. Для этого снимают шлак, брызги, окалины и другие изъяны. Также перед просвечиванием в обязательном порядке проводится осмотр и при выявлении некачественных участки должны устранятся.

При обнаружении погрешностей, решение о допуске или переделке конкретной детали лежит на нормативной документации. Именно установленные правила и инструкции позволяют определить вхождение погрешностей в установленные для данного изделия нормы.

Для проведения процедуры рентгеновскую трубку располагают так, чтобы пучок попадал на шов под прямым углом. На другой стороне изделия расположена кассета с рентгеновской пленкой. Так как существующие дефекты меньше влияют на проницаемость рентгеновских лучей, то они будут видны как более темные участки на пленке.

При радиографическом контроле не выявляют:

  • любые несплошности и включения с размером в направлении просвечивания менее удвоенной чувствительности контроля;
  • непровары и трещины, плоскость раскрытия которых не совпадает с направлением просвечивания;
  • любые несплошности и включения, если их изображения на снимках совпадают с изображениями посторонних деталей, острых углов или резких перепадов трещин просвечиваемого металла.

Гамма – излучение по принципу работы практически не отличается от рентгеновского. Это радиоактивные лучи, способные проникать сквозь металл и реагирующие на его неравномерность. В такой способ инспектирую от 10 до 25% всех швов, если конструкция – ответственная, то все швы. В качестве источника излучения используют различные химические элементы, подходящие под определенные металлы:

  • Кобальт – 60 (сталь, чугун, медь, бронза и латунь толщиной до 25 см), благодаря жесткому проникновению элемент подходит для большинства сталей и больших толщин;
  • Цезий – 137 (сталь до 10 см);
  • Иридий-192 (сталь до 5 см, алюминий до10 см);
  • Тулий-170 (сталь и алюминий до 20 см).

Со снижением проникаемости снижается вид сплавов и их толщина, но при этом среднее качество изображения остается и позволяет определить основные дефекты.

Портативный рентгеновский аппарат МАРТ-250

В отличие от рентгеновского, гамма-лучи имеют ряд преимуществ:

  • изотопы сохраняют работоспособность долгое время;
  • более легкое оборудование;
  • возможность дефектовки сложных узлов;
  • повышенная проницаемость лучей;

Такой контроль сварных соединений основывается на свойстве магнитных силовых линий реагировать на изменения в толще металла. Фиксируя подобные отклонения специальными приборами можно с высокой точностью найти погрешности в толще и на верхней части сплавов.

На данный момент существуют три вариации метода:

  • магнитно-порошковый;
  • магнитно-индукционный;
  • магнитно-графический.

Порошковый состоит в том, что на поверхность, заходя за стык шва, наносят сухой порошок или эмульсию, затем намагничивают сплав и определяют неточности. Если берется «сухой метод», то в качестве порошка выступает железная окалина или окислы. Намагничивают изделие электромагнитом, соленоидом или подавая ток на изделие.

В мокром методе магнитный порошок смешивают с керосином или специальным маслом. Полученная суспензия наносится на шов, а ее подвижность, рассеивания или скопления порошка – прямые идентификаторы погрешностей.

Магнитный дефектоскоп

При индукционном методе все данные фиксируются индукционной катушкой. Специальные приборы – дефектоскопы, фиксируют магнитное рассеивание у металлов толщиной до 25 мм.

Графический заключается в фиксации магнитных потоков на специальной ленте. Она крепится вдоль шва, а затем отклонения определяются на экране электронно-лучевой трубки.

Наравне с предыдущим способом, ультразвуковая дефектоскопия дает возможность зафиксировать отклонения, образующиеся при отражении волн от границ сред с различными свойствами.

Ультразвуковой источник посылает сигнал, который при достижении конца сплава отражается. Если на своем пути сигнал встречает дефект, то это отражается на волне, что в свою очередь фиксируется прибором. Различные дефекты имеют свои собственные отражения, поэтому определить природу изъяна достаточно просто.

Ультразвуковой дефектоскоп

Из описанных уже методов, данный считают наиболее удобным для использования. Это обусловлено возможностью определить изъян как на поверхности, так и в глубине металла. Также, метод не имеет таких строгих ограничений, как магнитный. Есть ряд металлов с крупным зерном, например чугун,  которые не поддаются ультразвуковому исследованию, но для всех других сплавов можно без труда вести контроль качества сварочных работ.

Есть еще один недостаток – сложность расшифровки полученных данных. Увы, дефектоскопы дают пользователю очень специфические данные, которые следует расшифровать. Без предварительной подготовки сделать это практически невозможно, поэтому для работ нужен обученный специалист.

Данный способ основан на свойствах жидкостей с малым поверхностным натяжением. Такие жидкости не сбиваются в крупные капли в одном месте и стремятся стечь, но в то же время способны заполнить мельчайшие канавки и отверстия. Подобным образом определяются поверхностные дефекты и в редких случаях сквозные каналы.

Нанесение спрея на шов

На шов наносится специальный раствор, который мгновенно заполняет все канавки, поры и другие мелкие дефекты. Затем осматривая шов можно обнаружить крупные изъяны. Для большего удобства жидкости подкрашивают красителем, добавляют люминесцентные и другие окрашивающие добавки.

Метод является логическим продолжением капиллярного. Основная идея в том, что используя жидкости со свойствами глубокого проникновения,  можно определить сквозные канавы шва.

Для этого берут простой керосин, наносят на одну сторону шва, а на другой фиксируют мокрые пятна, сигнализирующие о сквозных каналах. Из недостатков стоит отметить необходимость тщательно очистки поверхности и соблюдение точности на всех этапах для исключения случайного загрязнения противоположной стороны сварного шва.

Учитывают основные параметры исследуемых швов:

  • физические характеристики;
  • толщину и габариты заготовок;
  • состояние поверхности: для ультразвука необходима зачистка с контактной смазкой, для магнитно-резонансного метода – проводят осадку шва (снимают поверхностные напряжения), для капиллярного исследования требуется идеально ровная и очищенная поверхность.

При выборе метода дефектоскопии необходимо учитывать:

  • размеры допустимых дефектов, по техническим условиям подбирают чувствительность приборов;
  • условия проведения исследований.

Если важно выявить объемные дефекты, пустоты – надежнее провести радиационный контроль. Трещины и непровары определяют ультразвуком, магнитным полем. Дефекты, выходящие на поверхность, выявляют капиллярным методом.

Для контроля качества сварки используют радиационные методы и устройства. По сути это тот же рентгеновский аппарат, используемый в больницах, или прибор с источником гамма-излучения, приспособленный для облучения сварных соединений.

Он основан на способности этих лучей, проникать через любые материалы. Интенсивность проникновения зависит от вида исследуемых веществ. Благодаря этому на фотопленке, стоящей за исследуемым изделием, остается изображение, характеризующее состояние данного материала.

2. Задачи предупредительного контроля

Одним из важнейших условий повышения качества сварных соединений является постоянное улучшение системы контроля качества. В существующей системе контроля качества основное внимание уделяется выявлению дефектов в готовых сварных швах. Этим объясняется все еще значительный процент брака в сварных изделиях.

Положение усугубляется еще и тем, что контроль качества физическими методами производится часто спустя продолжительное время после выполнения сварочных работ, что не позволяет своевременно принимать меры по устранению причин брака. Бывают случаи, когда дефекты в сварных швах обнаруживаются при сдаче готового изделия, а иногда и в процессе его эксплуатации.

Контроль не обеспечит ожидаемых результатов, если он направлен на выявление дефектов только в уже выполненных швах или проводится спустя продолжительное время после выполнения сварочных работ. В этом случае невозможно принять меры для устранения причин появления брака.

Испытание шва

Следовательно, основное внимание необходимо уделять предупредительному контролю, позволяющему на различных стадиях сварочного производства проверять основные и сварочные материалы, квалификацию сварщиков, сварочное оборудование, подготовку изделий под сварку, технологию сварки.

Вместо заключения

Контролер сварочных работ должен очень внимательно относиться к своей работе, поскольку от его внимательности зависит все. Выполняя контроль качества сварки и сварных соединений записывайте все особенности и дефекты, которые сможете обнаружить. Комбинируйте различные методы контроля сварки, чтобы получить полную картину. Не используйте разрушающие методы контроля сварных соединений, которые не подходят для тех или иных металлов.

Сварка и контроль качества сварных соединений металлоконструкций — дело непростое, но обучившись этому лишь однажды вы сможете довольно быстро выполнять контроль даже в полевых условиях. Также не забывайте, что есть техника безопасности и ее нужно соблюдать не только при сварке, но и при контроле швов.

3.1. Входной контроль сварочных материалов

Высокое качество сварных изделий возможно только при условии обеспечения качества исходных основных и сварочных материалов.

Основным материалом для сварных соединений является металл. Перед сваркой проверяется наличие сертификатов на материал и его заводская маркировка, а для специальных сталей, кроме того, наличие и количество легирующих элементов.

В сертификате указываются марка и химический состав, номер плавки, масса и номер партии, результаты всех испытаний, выполненных в соответствии с действующим стандартом, номер стандарта на отправляемый металл, профиль и размер материала. Показатели механических свойств материала — пределы прочности, текучести, относительное удлинение и поперечное сужение, угол загиба, ударная вязкость, химический состав — должны соответствовать принятым стандартам и техническим условиям.

При отсутствии сертификата металл до определения его механических свойств, химического состава и испытания на свариваемость нельзя запускать в производство. Проведение такого контроля позволяет избежать получения некачественных сварных изделий, сэкономить трудозатраты на монтажные и сварочные работы, а иногда даже сэкономить металл, так как в противном случае не исключена возможность применения его не по назначению.

Свариваемость металла можно определить несколькими методами. Прежде всего, свариваемость характеризуется механическими свойствами (испытание на разрыв, изгиб, ударную вязкость) и способностью металла без образования трещин и значительного изменения свойств выдержать быстрое охлаждение и усадку при этом, а также значительное тепловое расширение и быстрый нагрев до температуры плавления.

Сэкв = С Mn/20 Ni/15 (Cr Mo V)/10

Окончание проверки

где Сэкв — эвивалент углерода, %; Mn, Ni, Mo, V, C — содержание химических элементов в стали.

Для ручной дуговой, автоматической и полуавтоматической сварки эквивалент углерода не должен превышать 0,45 %.

Иногда для определения свариваемости применяют методы, имитирующие процесс сварки. Например, пластины основного металла подвергают термической обработке, воспроизводя изменения, которые металл претерпевает в процессе сварки.

Большое влияние на качество сварки оказывает качество сварочных материалов. Основным видом сварочных материалов при монтаже являются электроды для ручной сварки. На строительномонтажные площадки электроды поступают от их изготовителей. Каждая партия электродов должна иметь сертификат, в котором указываются их завод-изготовитель, дата изготовления, номер и масса партии, стандарт, диаметр, тип и марка электродов, механические свойства наплавленного металла и допустимое в нем содержание серы и фосфора, рекомендуемые режимы сварки и режим просушки электродов.

Каждая пачка электродов имеет, кроме того, этикетку, которая в зависимости от способа упаковки наклеивается на нее снаружи или вкладывается внутрь. На этикетке указываются назначение электродов, их диаметр, марка и тип, рекомендуемые режимы сварки и сушки перед сваркой, заводизготовитель, дата изготовления и номер партии.

Необходимо проверить соответствие поступивших электродов сертификату, выборочно проконтролировать их внешний вид. Покрытие электродов должно быть прочным (проверяется при изгибе и падении его на стальную плиту) и плотным, и при этом оно не должно иметь пор, трещин, вздутий и комков неразмешанных компонентов.

Допустимы следующие дефекты поверхности покрытия:

  • поры — не более трех на длине 100 мм, диаметром до 2 мм, глубиной до 0,5 толщины покрытия;
  • шероховатость поверхности, продольные риски и отдельные задиры глубиной не более 1/4 от толщины покрытия;
  • не более двух волосных трещин длиной до 12 мм каждая;
  • не более трех местных вмятин глубиной до 0,5 от толщины покрытия и длиной до 12 мм каждая.

Для определения степени влажности покрытия электродами проверяемой партии заваривается несколько образцов.

При наличии недопустимых в электродах дефектов применять их запрещается. О поставке некачественных электродов необходимо сообщить заводу-изготовителю с просьбой выслать представителя для составления акта и головному по подчиненности в министерстве (ведомстве, главном управлении) институту по сварке.

На некачественные электроды специально созданной для их проверки комиссией, в состав которой должен входить представитель завода-изготовителя, составляется акт. В случае отказа завода от посылки своего представителя акт составляется без него.

В случае если применяемые электроды не обеспечивают стабильного горения сварочной дуги и равномерного плавления, а также если в сварных швах возникают трещины и поры, следует дополнительно проверить механические свойства наплавленного металла, технологические свойства электродов, а при необходимости выполнить металлографический анализ.

Магнитная проверка

При отсутствии сертификата применять электроды разрешается только после их проверки. Проверке подлежат сварочные свойства электродов, механические свойства и химический состав наплавленного металла, механические свойства сварного соединения, а также прочность покрытия. Для электродов, обеспечивающих получение в шве аустенитной структуры наплавленного металла, кроме того, следует проверить наличие в нем ферритной фазы.

Однако проверка поступивших электродов (как и других сварочных материалов) не исчерпывает всех мероприятий предупредительного контроля.

Качество электродов во многом зависит от условий их хранения. После проверки вновь поступивших электродов сотрудник лаборатории, на которого возложен контроль за их хранением, устанавливает режимы хранения на складе и просушивания (если это требование установлено в паспорте на электроды), а затем периодически контролирует выполнение этих режимов работниками склада.

Одной из важнейших задач предупредительного контроля электродов является создание на центральных складах организаций и складах монтажных участков необходимых условий для складирования. Склады должны быть оборудованы стеллажами для хранения электродов по маркам и диаметрам, а также печами для сушки и прокаливания электродов, в которых должна поддерживаться необходимая температура.

Причем эта температура должна быть постоянной не только в разные времена года, но и в течение суток, с учетом явления конденсации. В противном случае при ночном остывании нагревшегося за день помещения содержащаяся в нем влага сконденсируется в виде росы на пачках электродов и перейдет при негерметичной упаковке в покрытие.

Режимы сушки и прокаливания электродов устанавливаются в зависимости от типа покрытия и приводятся в их паспортах, а также в каталогах. Следует тщательно выдерживать эти рекомендуемые режимы, так как качество недосушенных и пересушенных электродов резко ухудшается. При этом и в первом, и во втором случае возникает опасность порообразования в швах, причинами которой являются влага и ухудшение защиты зоны сварочной дуги вследствие выгорания органических составляющих покрытия.

Ультразвуковая проверка

В зависимости от конкретных форм организации сварочных работ ответственность за создание необходимых условий для хранения и подготовки к применению электродов (а также других сварочных материалов) должна нести лаборатория по контролю, сварочная лаборатория или служба главного сварщика, а там, где нет указанных служб, — главный инженер организации.

Для сушки электродов можно использовать печь, показанную на рис. 1, в которую загружается 120 кг электродов. Кроме того, в ней прокаливаются флюс и проволока. Номинальная температура нагрева такой печи 400 °С, время достижения этой температуры — 1 ч, номинальная мощность — 20 кВт, размеры рабочего пространства — 490 × 655 × 830 мм, число термических нагревательных элементов (ТЭН) — 10.

Рис. 1. Печь для сушки и прокаливания электродов и флюса

Имеются также переносные печи для прокалки электродов. Например, разработана печь с единовременной загрузкой до 30 кг электродов. Такая печь представляет собой цилиндрическую емкость, установленную на основании, в котором размещена вся электроаппаратура. В корпус печи вмонтирован терморегулятор, обеспечивающий регулирование температуры в пределах от 100 до 400 °С.

Очень удобными являются передвижные склады, размещаемые в сборно-разборных домиках и предназначенные для хранения и подготовки к работе 1 т электродов на строительно-монтажной площадке в любых климатических условиях.

Представляет интерес передвижной универсальный склад с разовой загрузкой 3 т электродов, имеющий габаритные размеры 4 600 × 2 300 × 2 450 мм и массу 1 250 кг. Для транспортирования по строительно-монтажной площадке такой склад устанавливают на сани из труб диаметром 159 мм. Корпус склада двойной. Наружная облицовка выполнена из листового металла, внутренняя — из досок, а между ними проложен изоляционный слой из стекловаты.

Печь для сушки и прокаливания электродов изготовлена из листового проката. Между наружной и внутренней обшивкой проложена изоляция из стекловаты толщиной 60 мм. Нагревательные элементы выполнены из нихромовых спиралей диаметром 2 … 3 мм. Диа

пазон рабочих температур от 15 до 400 °С. Максимальная разовая загрузка электродов 420 кг. Печь состоит из двух камер. В каждой камере имеется вентиляционное отверстие диаметром 15 мм, которое при необходимости закрывается заслонкой. Специальная система управления позволяет обеспечивать необходимые температуры и время выдержки электродов как в ручном, так и в автоматическом режиме.

Точность поддержания необходимой температуры обеспечивается встроенными в цепь управления электроконтактными регуляторами и выдерживается в пределах ±60 °С. Продолжительность работы нагревателей в автоматическом цикле устанавливается с помощью регулятора времени в пределах от 0 до 120 мин с точностью ±20 с. Время выхода на режим максимальной температуры 11 … 13 мин.

Преимущества и недостатки

Достоинства:

  • низкая трудоемкость исследований, контролирует соединения один человек в течение нескольких минут;
  • безопасность проведения контроля, только радиационная диагностика предполагает влияние вредных факторов;
  • разнообразие контролирующих приборов, для основных методов дефектоскопии выпускают мобильные дефектоскопы;
  • разнообразие контролируемых объектов: проверяют плоские, объемные детали, трубы;
  • контроль швов, произведенных любым видом сварочного аппарата.

Недостатки:

  • у каждого из методов существуют определенные ограничения по применению, ввиду выявляемых изъянов;
  • необходимость использования специальных реагентов, расходных материалов;
  • приходится специально подготавливать исследуемые поверхности;
  • контролируемые фрагменты после диагностики необходимо дополнительно обрабатывать антикоррозионными средствами, при снятии окалины, оксидной пленки защитные свойства металла ухудшаются.

1.2. Требования к квалификации сварщиков, контролеров и ИТР

1.2.1. Сварка
металлоконструкций зданий промышленных объектов должна проводиться сварщиками,
имеющими удостоверения на право производства соответствующих сварочных работ,
выданные им согласно требованиям «Правил аттестации сварщиков», утвержденных
Госгортехнадзором России.

К сварке конструкций из
сталей с пределом текучести 390 МПа (40 кгс/мм2) и более допускаются
сварщики, имеющие удостоверение на право работ по сварке этих сталей.

К механизированным способам
сварки допускаются сварщики-операторы, прошедшие специальный курс теоретической
и практической подготовки и сдавшие испытания на право производства этих работ.

Сварщики всех специальностей
и квалификаций должны сдать испытания на 2-ю квалификационную группу по
электробезопасности. Кроме того, все сварщики должны сдать испытания по
противопожарным мероприятиям и технике безопасности.

1.2.2. Сварщик, впервые
приступающий к сварке в данной организации, должен перед допуском к работе
независимо от наличия у него удостоверения на право производства
соответствующих работ сварить пробные (допускные) образцы. Сварка пробных
образцов должна проводиться в условиях, тождественных с теми, в которых будет
выполняться сварка конструкций.

Конструкция и число пробных
образцов устанавливаются руководителем сварочных работ в зависимости от типов
производственных соединений и квалификации сварщика. Качество пробных сварных
соединений определяется путем визуального контроля на предмет определения
сплошности и формирования шва, а при необходимости (по усмотрению руководителя
сварочных работ) – с помощью неразрушающих физических методов контроля.

Качество пробных сварных
соединений необходимо оценивать по нормам, предусмотренным для таких же
производственных соединений. Пробные соединения должны быть идентичными или
однотипными по отношению к тем производственным соединениям, которые будет
сваривать проверяемый сварщик. Характеристика однотипных сварных соединений
дана в «Правилах аттестации сварщиков».

1.2.3. Сварщики допускаются
к тем видам работ, которые указаны в удостоверении. В удостоверении должны быть
перечислены марки сталей или группы марок сталей в соответствии с «Правилами
аттестации сварщиков», к сварке которых допускается сварщик.

1.2.4. Для сварки при
температуре ниже минус 30 °С сварщик должен предварительно сварить пробные
стыковые образцы при температуре не выше указанной. При удовлетворительных
результатах механических испытаний пробных образцов сварщик может быть допущен
к сварке при температуре на 10 °С ниже температуры сварки пробных образцов.

1.2.5. Руководство
сварочными работами должно осуществлять лицо, имеющее документ о специальном
образовании или подготовке в области сварки.

К руководству работами по
сварке, контролю сварных соединений и операционному контролю допускаются ИТР,
изучившие настоящий РД, соответствующие СНиП, рабочие чертежи изделий,
производственно-технологическую документацию (ПТД) по сварке и методические
инструкции по контролю. Знания ИТР и их профессиональная подготовка по
сварочному производству должны быть проверены комиссией, назначенной приказом
руководителя предприятия. Знания ИТР проверяются не реже одного раза в три
года.

1.2.6. К выполнению работ по
контролю качества сварных соединений допускаются контролеры, прошедшие
специальную программу теоретического и практического обучения и получившие
удостоверение на право выполнения работ по дефектоскопии сварных соединений
соответствующим видом (способом) контроля. Контролеры по физическим методам
контроля должны аттестовываться в соответствии с «Правилами аттестации
специалистов неразрушающего контроля», утвержденными Госгортехнадзором России
18.08.92 г.

1.2.7. Подготовку
контролеров должны осуществлять специальные учебные заведения или подразделения
профессиональной подготовки (учебные комбинаты, центры, курсы и т.п.)
предприятий, выполняющие работы по контролю качества сварки и имеющие лицензию
на право проведения таких работ.

Подготовка контролеров
должна быть специализирована по методам контроля (ультразвуковая дифектоскопия,
радиографирование и др.), а при необходимости – по типам сварных соединений,
что должно быть указано в их удостоверениях. Каждый контролер может быть
допущен только к тем методам контроля, которые указаны в его удостоверении.
Контролер, имевший перерыв в работе (по данному виду контроля) свыше 6 месяцев,
должен вновь сдать экзамены в полном объеме.

Подробная схема

Качество сварных соединений, особенно при ручных способах сварки, во многом определяется квалификацией сварщиков. Поэтому необходимо уделять серьезное внимание контролю квалификации сварщиков, начиная со стадии их обучения.

В настоящее время обучение сварщиков осуществляется двумя основными способами: в специализированных центрах профессиональной подготовки и учебных комбинатах предприятий.

Для реализации качественной подготовки сварщиков в специализированных центрах подготовки разрабатываются программы обучения, которые включают в себя теоретическую подготовку и практическое обучение для получения основных навыков данной профессии.

Теоретическая подготовка включает в себя изучение теоретических основ сварки, ознакомление с характеристиками источников питания сварочной дуги, марками сварочных электродов, защитных газов и т.д. Подробно рассматриваются схемы сварочных горелок для газовой сварки и дуговой сварки в защитных газах, схемы баллонов для хранения газов, редукторов, смесителей и т.д.

Практическое обучение охватывает объем навыков, необходимых сварщику для выполнения работ в соответствии с присваиваемым разрядом по тарифно-квалификационному справочнику.

При поступлении сварщика на предприятие проводится контроль его навыков по сварке тех деталей и материалов, которые он будет сваривать в соответствии с технологическим процессом. По результатам проведенного контроля сварщик может быть допущен к выполнению работ или же ему требуется дополнительное обучение на рабочем месте. Дополнительное обучение осуществляется, как правило, опытными сварщиками.

Контроль квалификации сварщиков должен позволять оценить индивидуальные способности и возможности каждого сварщика. В контрольной или сварочной лаборатории, обслуживающей конкретную организацию, на каждого сварщика, допущенного к самостоятельной работе, должен заводиться формуляр, содержащий все необходимые данные, по которым можно судить о его квалификации.

Причем целесообразно иметь формуляры двух категорий: на обычных рядовых сварщиков и на сварщиков высокой квалификации. Формуляры на рядовых сварщиков должны иметься в каждом строительно-монтажном управлении, а формуляры на сварщиков высокой квалификации — в главных управлениях. Это позволит избежать ошибок при направлении сварщиков различных организаций на пусковые объекты, когда организация, ответственная за ввод объекта, не в состоянии выполнить сварочные работы собственными силами.

Формуляр сварщика высокой квалификации помимо обычных сведений о рабочем (фамилия, имя, отчество, год рождения, домашний адрес, наименование строительно-монтажной организации, квалификационный разряд, номер клейма, общий стаж работы по профессии) должен содержать следующие данные:

  • способы и пространственное положение сварки, к которым он допущен;
  • свариваемые материалы, по которым он специализируется (наименование, толщина, пространственное положение и способ сварки применительно к материалу);
  • основные свариваемые изделия (трубопроводы из легированной, углеродистой стали, цветных металлов, металлоконструкции, технологическое оборудование), на изготовлении которых специализируется сварщик, стаж работы на определенном изделии;
  • наименования объектов, на которых работал сварщик (конкретное наименование объекта), наименования свариваемых изделий (трубопроводы, металлоконструкции и т. п.) с указанием названия материала и времени выполнения работ (год, данные о качестве сварки применительно к конкретным изделиям, число просвеченных снимков, испытанных образцов, в том числе забракованных);
  • число просвеченных за год снимков на изделиях, сваренных данным сварщиком, и результаты контроля (с указанием числа годных и забракованных снимков за каждый год отдельно применительно к конкретным изделиям).

Периодически по мере необходимости формуляр дополняется. При этом указываются должности и фамилии сотрудников, сделавших дополнения.

В настоящее время в химическом и нефтехимическом производстве стали применяться установки со сверхвысокими параметрами давления и температуры, что предъявляет самые жесткие требования к качеству сварных соединений.

Указанные факты оправдывают введение в дополнение к существующим общероссийским требованиям к квалификации сварщиков дополнительных ведомственных требований, в частности к подготовке электросварщиков ручной сварки высокой квалификации для строительно-монтажных организаций.

 Metody-kontrolya-svarnyh-shvov

Подготовка производится только в строительно-монтажном управлении без отрыва или с отрывом от производства из числа сварщиков 5-го и 6-го разрядов, достигших наиболее высоких показателей по качеству при выполнении ответственных сварочных работ. Подготовка состоит из теоретического и практического обучения.

Практическое обучение осуществляется под руководством инструкторов из числа сварщиков высокой квалификации. Продолжительность обучения устанавливается индивидуально в каждом случае в зависимости от степени подготовки сварщиков к выполнению ответственных сварочных работ. Для аттестации сварщиков в строительно-монтажном управлении приказом по тресту создается специальная комиссия.

Особой проверке подвергается квалификация сварщиков, занятых на объектах, подведомственных Ростехнадзору. К аттестации на право выполнения работ на указанных объектах допускаются сварщики в возрасте не моложе 18 лет, имеющие свидетельство об окончании специализированного профессионально-технического училища или курсов по сварке, проработавшие по этой специальности не менее шести месяцев, а при работе на автоматах, полуавтоматах и контактных машинах — не менее трех месяцев.

Перед аттестацией сварщики должны пройти специальную теоретическую и практическую подготовку, учитывающую специфику выполнения работ, к которым они готовятся. Подготовка должна проводиться по специальным программам, утвержденным соответствующим ведомством.

Принцип дефектоскопии

Диагностика сварных соединений включает разные методы исследований, основанных на физических свойствах металлов, структурных превращениях на границе фазового перехода. На исследуемые участки воздействуют радиоволнами, ультразвуком, магнитным электростатическим полем, красителями. Разнородные структуры по-разному воспринимают воздействие.

Дефектоскопией сварных соединений называют комплекс методов контроля качества визуально или с использованием специальной аппаратуры для выявления дефекта. Принцип дефектоскопов, методика диагностики утверждаются стандартами. По результатам дефектоскопии определяется прочность (эксплуатационная надежность) сварных швов после завершения работы.

5. Контроль подготовки изделий под сварку, сварочного оборудования и технологии сварки

Подготовка изделий под сварку оказывает существенное влияние на качество выполняемого сварного соединения. Основными этапами проверки являются контроль чистоты поверхности, геометрических размеров разделки шва и качества прихваток.

Недопустимо наличие в разделке шва и на прилегающей к ней поверхности масла, грязи, ржавчины, окалины, а также наличие грязи и мусора на участках изделия, подвергаемых после сборки кантовке, поскольку при кантовке загрязнения могут попасть в разделку шва.

При проверке разделки шва под сварку основными контролируемыми размерами являются:

  • зазор между кромками, притупление и угол раскрытия разделки (для стыковых швов);
  • ширина нахлестки и зазор между листами (для нахлесточных соединений);
  • угол и зазор между свариваемыми деталями, притупление и угол скоса кромок (для тавровых соединений);
  • зазор между свариваемыми деталями и угол между ними (для угловых соединений).

От качества подготовки и геометрических размеров разделки шва в значительной степени зависят качество сварного соединения и производительность сварочных работ.

В результате завышения угла скоса кромок происходит перерасход электродного материала, а также возрастают деформации и коробления свариваемых элементов, поскольку увеличиваются зона интенсивного разогрева и влияние усадки наплавленного металла вследствие увеличения его объема.

Уменьшенный угол скоса затрудняет надежное проплавление вершины угла разделки и приводит к непровару в корне шва.

Увеличение размера притупления кромок приводит к непровару, а его уменьшение — к прожогам.

Отклонение размера зазора от нормального происходит вследствие неточной сборки, смещения и коробления деталей под действием термических и усадочных напряжений наплавленного металла ранее заваренных швов и неточной разделки кромок. Уменьшение зазора обычно приводит к непровару, а чрезмерное его увеличение — к прожогам.

Учитывая влияние геометрических размеров разделки шва на качество сварного соединения, их следует проверять с помощью специального инструмента — шаблона ШС-2 для проверки размеров разделки и сварного шва, выполненного электродуговой сваркой при толщине металла 4 … 26 мм. Набор таких шаблонов обеспечивает возможность контроля наиболее распространенных типов сварных соединений.

Набор шаблонов представляет собой 22 стальные пластины, расположенные на осях между двумя щеками. На каждой из осей закреплено по 11 пластин, которые с двух сторон поджимаются плоскими пружинами. У торцов кромки каждой пластины указан порядковый номер расположения ее в наборе. Пластины 1 и 2 (рис. 3) предназначены для проверки углов разделки кромок, а пластина 3 — для измерения притупления кромки.

Шаблоны применяются следующим образом. Для проверки угла разделки кромок (рис. 3, а) пластины 1 и 2 плотно приставляют к обеим плоскостям замеряемого элемента, образующим проверяемый угол. Притупление кромки (рис. 3, б) проверяют по рискам, нанесенным с интервалом 1 мм на пластине 3. Для проверки зазора f между кромками (рис.

При проверке качества прихваток следует обращать внимание на их чистоту и высоту. Загрязненные с неудаленным шлаком прихватки могут привести к образованию шлаковых включений в металле шва, а прихватки большой высоты — к непровару.

Качество сборки соединения под сварку во многом зависит от метода обработки кромок. Наилучшие результаты дает механическая обработка (строжка, фрезеровка, токарная обработка), следовательно, внедрение переносных приспособлений и станков для механической обработки кромок позволит значительно повысить качество подготовки разделки швов.

Рис. 3. Применение шаблонов марки ШС-2: а — проверка угла разделки кромок; б — проверка притупления; в — проверка зазора; 1 … 3 — номера пластин; f — зазор между кромками

Необходимо шире развернуть внедрение на монтаже плазменной резки вместо широко применяемой в настоящее время ручной кислородной резки, обеспечивающей низкое качество кромок. Предпосылки для этого имеются. Созданы передвижные установки плазменной резки специально для монтажных условий, а также разработан способ плазменной резки с использованием воздуха, что значительно расширяет возможности этого высококачественного и высокопроизводительного способа подготовки кромок.

Замена ручных металлических щеток пневмоили электрошлифовальными машинами с абразивными кругами позволяет получить чистые кромки без ржавчины, окалины и грязи. Подготовку кромок, сборку изделий под сварку, наложение прихваток, зачистку подготовленного сварного соединения в соответствии с существующими техническими условиями легче выполнять в условиях цеха, чем на монтажной площадке, поэтому перенесение заготовительных операций с монтажной площадки в цеха, мастерские или на базы позволяет значительно улучшить качество подготовки изделий под сварку.

Проверка качества подготовки изделий под сварку является массовой операцией предупредительного контроля, поэтому проводить ее должны, в первую очередь, линейные специалисты, сварщики и бригадиры-сборщики. Наиболее эффективен этот метод предупредительного контроля при наличии сварочных участков и специальных служб предупредительного контроля.

Качество сварочного оборудования является одним из элементов, влияющих на качество сварного соединения. Этот вид контроля целесообразно разбить на два этапа. На первом этапе контролируется выбор необходимого оборудования, а на втором — состояние уже выбранного сварочного и вспомогательного оборудования.

При выборе оборудования следует руководствоваться, прежде всего, требованиями получения качественного сварного соединения. Для источников питания сварочной дуги следует рассмотреть технические данные (род тока, пределы его регулирования, напряжение и т. п.) с позиции получения качественных сварных соединений, а для автоматов и полуавтоматов — возможность их применения вообще, а в частности — возможность получения надежной защиты сварочной дуги в условиях строительно-монтажной площадки. Для выполнения термической обработки предпочтительна аппаратура, обеспечивающая автоматический контроль ее режимов.

Выбранное сварочное оборудование должно обеспечивать высокое качество работы. Например, работники строительно-монтажных организаций все больше убеждаются в преимуществах передвижных установок для сварки, термообработки и резки. Такие установки не только мобильны, но и имеют более длительный срок службы, что особенно важно в данном случае, а также смонтированную на них аппаратуру лучшего качества по сравнению с оборудованием, устанавливаемым стационарно на рабочих местах.

Немаловажное значение для обеспечения хорошего качества сварочных работ имеет возможность дистанционного управления сварочным током с рабочего места сварщика. На монтажной площадке рабочее место сварщика иногда находится за несколько десятков метров от источника питания и на значительной высоте над нулевой отметкой.

Важным этапом предупредительного контроля является поддержание в заданных пределах состояния, технического уровня и надежности сварочного оборудования. Необходимо соблюдать график технического обслуживания оборудования и выполнять соответствующие инструкции по его эксплуатации.

Проверка технологии сварки также является важным звеном в системе предупредительного контроля. Производиться она должна шире, чем это подразумевает понятие «технология сварки», так как на данном этапе контролируются собственно технология сварки, сварочные материалы, оборудование, инструмент сварщика и его квалификация.

При проверке технологии сварки в зависимости от выбранного метода сварки контролируется целый ряд показателей:

  • марка и диаметр электрода, приемы работы (при ручной сварке);
  • скорость сварки, марка и диаметр присадочной проволоки (при механизированной сварке);
  • марка флюса и вид защитных газов, род сварочного тока, его значение, напряжение и полярность (при сварке на постоянном токе);
  • вылет электрода, число валиков в сварном шве и порядок их наложения, режимы термической обработки.

vneshnij-osmotr-svarnogo-shva

Проверка технологии сварки начинается со сварки контрольных образцов (катушек для трубопроводов и пластин для металлоконструкций и оборудования). При этом проверяются правильность рекомендованных режимов и механические свойства сварного соединения. В случае необходимости проверяются показатели наплавленного металла, а также проводятся коррозионные и металлографические исследования металла сварного соединения. Непосредственно в процессе сварки проверяются элементы ее технологии.

Контроль сварочных материалов заключается в проверке правильности их хранения на рабочих местах. Для хранения электродов рекомендуются специальные термоизоляционные пеналы, защищающие их от насыщения влагой. В пенал загружается 5 кг электродов. Рукоятка и крюк позволяют крепить пенал к монтажному поясу сварщика или подвешивать его на рабочем месте.

Важное значение имеет проверка состояния инструмента сварщика и сварочного оборудования. Прежде всего, источники питания сварочной дуги должны быть оборудованы приборами для контроля сварочного тока и напряжения на дуге и обеспечивать параметры режима сварки, предусмотренные технологией. Длина сварочного провода не должна превышать максимально допустимое значение, а также он не должен иметь скруток (отрезки проводов должны соединяться специальными муфтами или соединителями).

Ультразвуковая дефектоскопия

В основе данного принципа лежит такое явление, как затягивание жидкости в тонкие трубки, благодаря действию сил поверхностного натяжения. Интенсивность наполнения капилляра зависит от его диаметра и смачиваемости материала. Чем больше смачиваемость и тоньше трубка капилляра, тем быстрее и глубже затягивается жидкость.

Мнение эксперта

Багров Виктор Сергеевич

Сварщик высшего 6-го разряда. Считается мастером своего дела, знает тонкости и нюансы профессии.

Заметим, что подобный способ пригоден для оценки качества соединений из металла, пластмассы или керамики.

После проникновения жидкости в капилляр все изъяны обнаруживают себя. Специальные вещества для осуществления капиллярной дефектоскопии, называются пенетрантами. Они характерны своей цветовой контрастностью, а также малыми возникающими силами поверхностного натяжения. Полости дефектов наполняются пенетрантами и становятся легкоразличимыми.

В настоящее время разработано несколько десятков рецептур пенетрантов, и все они обладают различными свойствами. Некоторые из них изготавливаются на водной основе, а также на основе керосина, бензола или скипидара. Органические жидкости наиболее приемлемы, так как они повышают чувствительность средства к самым мелким дефектам.

Частным случаем капиллярного исследования является люминесцентная дефектоскопия. При таком методе исследования в рецептуре пенетрантов включены люминесцирующие вещества. Исследуемую поверхность облучают ультрафиолетовыми лучами, после чего вещество, проникшее в трещину или пору, начинает светиться.

Все вещества для капиллярной дефектоскопии разделяют по чувствительности. Высшей степенью считается первый класс чувствительности. Вещества 1 класса проникают в капилляры, диаметр которых составляет 0,1 мкм. Существует и верхнее предельное значение, при котором еще наблюдается затягивание жидкости в капилляр. Оно примерно равняется 0,5 мм. Еще одно требование, предъявляемое к капилляру – его длина должна быть в десятки раз больше диаметра.

Обычно пенетарнты выпускают в виде аэрозоля. При такой форме выпуска его удобно наносить на поверхность. Но в комплект средств для дефектоскопии включается еще очиститель (для предварительной обработки), а также проявитель (для формирования окончательного рисунка). Применение пенетрантов имеет свои достоинства и недостатки.

  • К положительным моментам можно отнести низкую себестоимость процесса, элементарность технологии, производительность, широкий спектр исследуемых конструкций.
  • Недостатки сводятся к необходимости тщательной очистки шва, возможности проверки только поверхностных дефектов, а также невозможности применения метода для капилляров с диаметром более 0,5 мм.

instrumenty-dlya-vizualnogo-kontrolya.

Контроль качества сварочных швов с помощью керосина следовало бы отнести к проверке на проницаемость, однако этот метод все же основан на капиллярных явлениях. Он считается наиболее простым и доступным в материальном плане. Керосин обладает высокой текучестью и способен проникать в самые мелкие трещины.

Алгоритм проверки сварного шва сводится к нескольким несложным действиям. Шов с двух сторон очищается от грязи, окалины и шлака. Одна из сторон выбирается для наблюдения и покрывается водным раствором мела (на 1 литр воды берется 400 г порошка). Для увеличения скорости высыхания суспензии можно шов просушить потоком горячего воздуха. Обратная сторона поверхности обильно смачивается керосином. Необходимо процедуру смачивания повторить 2-3 раза с интервалом в 15-30 минут.

Количество повторений и интервал зависят от толщины металла. Смачивание проводится любым доступным способом (ветошью, кистью, краскопультом). Протечка керосина станет заметной на стороне, покрытой меловой суспензией. Со временем появятся темные точки или полосы. Необходимо сразу после их появления зафиксировать места дефектов, иначе керосиновые пятна расплывутся, и трудно будет определить локализацию трещины, свища или поры.

Испытание может занять несколько часов. Чем выше температура окружающей среды, тем меньшей вязкостью обладает керосин. Следовательно, при повышенной температуре процесс оценки качества шва пройдет быстрее. Керосин преимущественно используют при проверке стыковых соединений. Швы, выполненные внахлест, подобным образом проверить гораздо проблематичнее.

Во время изготовления или ремонта различных емкостей, трубопроводных систем, пневматических систем к сварному шву предъявляются не только требования прочности, но и герметичности. Проверка на проницаемость может осуществляться разными способами, среди которых выделяют гидравлические и пневматические. Основная цель такой проверки – установить наличие сквозных пор, через которые впоследствии жидкость или газ будут выходить из резервуара.

В качестве вещества для испытаний применяется воздух, азот, вода или масло. Обычно нормального давления бывает недостаточно, поэтому создают избыточное давление, чтобы картина дефектов была более наглядной. При использовании пневматического способа исследуемая емкость наполняется газом (воздухом, инертным газом, азотом).

Как осуществляется контроль качества сварки швов и сварных соединений

Во время испытания необходимо следить за давлением и не превышать определенной нормы. Обычно в резервуар монтируют манометр и перепускной предохранительный клапан. Малогабаритные резервуары наполняют воздухом и погружают в воду, не смазывая мыльным раствором. Вышедший воздух в воде будет образовывать пузырьки.

К пневматическому способу контроля на проницаемость относится проверка аммиаком. Шов покрывается марлей или бинтом, пропитанным фенолфталеином. С обратной стороны шва подается смесь из аммиака и воздуха. Если аммиак проходит сквозь шов насквозь, то бинт окрашивается в красный цвет. Этот способ считается достоверным.

Для реализации гидравлического контроля полость заполняют жидкостью, обычно маслом или водой. Здесь также подразумевается проведение испытаний под давлением, превышающим рабочее значение на 50-100%. Чтобы выявить протечки достаточно выдержать емкость в таком состоянии около 10 минут. Параллельно с этим шов и околошовная зона обстукивается равномерно молотком. Если нет возможности создать избыточное давление, то емкость с жидкостью следует выдержать не менее двух часов.

Ультразвуковая волна обладает проникающей способностью и может отражаться от границы раздела сред, в которых звук по-разному распространяется. Это свойство лежит в основе данного метода. Устройство состоит из источника и приемника ультразвуковой волны. Если внутри металла нет дефектов, то рассчитывается скорость прохождения звука сквозь деталь в прямом и обратном направлении.

Ультразвуковая дефектоскопия по своей популярности и применимости превосходит магнитную и радиационную. В качестве недостатка выделяется сложная система раскодирования сигнала. Для проведения исследования требуется особая квалификация мастера. Ограничение на применение описанного метода связано с крупнозернистой структурой металлов. Не подлежат исследованию аустенитные стали и чугун.

Для контроля качества сварки применяют ультразвук. Принцип действия аппарата основан на отражении ультразвуковых волн от границы соединения двух сред с различными акустическими свойствами.

Датчик и излучатель плотно прикладывают к исследуемому материалу, после чего устройством вырабатывается ультразвук. Он проходит через весь металл и отражается от задней стенки, возвращаясь, попадает на приемный сенсор, который в свою очередь преобразует ультразвук в электрические колебания. Прибор представляет полученный сигнал в виде изображения отраженных волн.

Если внутри металла присутствуют какие-нибудь изъяны, датчик зафиксирует искажение отраженной волны. Опытным путем установлено, что различные дефекты сварки по-разному себя проявляют на ультразвуковом дефектоскопе. Это позволило провести их классификацию. При соответствующем обучении специалист может точно определить вид брака в шве.

Способ контроля качества сварных соединений ультразвуком широко распространился благодаря простоте и удобству применения, относительно недорогому оборудованию, безопасности использования по сравнению с радиационным методом.

Минусом способа является трудность расшифровки графического изображения. Контроль качества соединения может сделать только сертифицированный специалист. Его проблематично использовать для контроля крупнозернистых металлов типа чугуна.