Расчёт падения давления в трубопроводе

Потери напора на прямых участках трубы.

Чтобы подсчитать потери напора воды на прямых участках труб использует уже готовую таблицу, представленную ниже. Значения в этой таблице указаны для труб, изготовленных их полипропилена, полиэтилена и других слов, начинающихся с «поли» (полимеров). Если же вы собираетесь установить стальные трубы, то необходимо умножить приведённые в таблице значения на коэффициент 1,5.

Данные приведены на 100 метров трубопровода, потери указаны в метрах водного столба.

Расход

Внутренний диаметр трубы, мм

м3

л/мин

л/сек

14

19

25

32

38

50

63

75

89

0,5

8,33

0,14

8,9

2,1

0,6

0,8

13,33

0,22

20,2

4,7

1,3

0,4

1

16,67

0,28

29,8

7

1,9

0,6

1,5

25

0,42

14,2

3,9

1,2

0,5

2

33,33

0,56

23,5

6,4

2

0,9

2,5

41,67

0,69

9,4

2,9

1,3

0,4

30

500

8,33

13

4

1,8

0,5

0,2

3,5

58,33

0,97

17

5,3

2,3

0,6

0,2

4

66,67

1,11

21,5

6,6

2,9

0,8

0,3

0,1

4,5

75

1,25

8,2

3,6

1

0,3

0,1

5

83,33

1,39

9,8

4,3

1,2

0,4

0,2

5,5

91,67

1,53

11,6

5,1

1,4

0,5

0,2

6

100

1,67

13,5

6

1,6

0,5

0,2

6,5

108,3

1,81

15,5

6,9

1,9

0,6

0,3

7

116,7

1,94

17,7

7,8

2,1

0,7

0,3

8

133,3

2,22

22,4

9,9

2,7

0,9

0,4

0,2

Как пользоваться таблицей: Например, в горизонтальном водопроводе с диаметром трубы 50 мм и расходом 7 м3/ч потери будут составлять 2,1 метра водного столба для трубы из полимера и 3,15 (2,1*1,5) для трубы из стали. Как видите, всё довольно просто и понятно.

Примеры задач гидравлического расчета трубопровода с решениями

Задача 1

В аппарат с давлением 2,2 бар по горизонтальному трубопроводу с эффективным диаметром 24 мм из открытого хранилища насосом перекачивается вода. Расстояние до аппарата составляет 32 м. Расход жидкости задан – 80 м3/час. Суммарный напор составляет 20 м. Принятый коэффициент трения равен 0,028.

Рассчитайте потери напора жидкости на местные сопротивления в данном трубопроводе.

Исходные данные:

Расход Q = 80 м3/час = 80·1/3600 = 0,022 м3/с;

эффективный диаметр d = 24 мм;

длина трубы l = 32 м;

коэффициент трения λ = 0,028;

давление в аппарате Р = 2,2 бар = 2,2·105 Па;

общий напор Н = 20 м.

Решение задачи:

Скорость потока движения воды в трубопроводе рассчитывается по видоизмененному уравнению:

w=(4·Q) / (π·d2) = ((4·0,022) / (3,14·[0,024]2)) = 48,66 м/с

Потери напора жидкости в трубопроводе на трение определяются по уравнению:

HТ = (λ·l) / (d·[w2/(2·g)]) = (0,028·32) / (0,024·[48,66]2) / (2·9,81) = 0,31 м

Общие потери напора носителя рассчитываются по уравнению и составляют:

hп = H – [(p2-p1)/(ρ·g)] – Hг = 20 – [(2,2-1)·105)/(1000·9,81)] – 0 = 7,76 м

Потери напора на местные сопротивления определяется как разность:

7,76 – 0,31=7,45 м

Ответ: потери напора воды на местные сопротивления составляют 7,45 м.

Задача 2

По горизонтальному трубопроводу центробежным насосом транспортируется вода. Поток в трубе движется со скоростью 2,0 м/с. Общий напор составляет 8 м.

Найти минимальную длину прямого трубопровода, в центре которого установлен один вентиль. Забор воды осуществляется из открытого хранилища. Из трубы вода самотеком изливается в другую емкость. Рабочий диаметр трубопровода равен 0,1 м. Относительная шероховатость принимается равной 4·10-5.

Исходные данные:

Скорость потока жидкости W = 2,0 м/с;

диаметр трубы d = 100 мм;

общий напор Н = 8 м;

относительная шероховатость 4·10-5.

Решение задачи:

Согласно справочным данным в трубе диаметром 0,1 м коэффициенты местных сопротивлений для вентиля и выхода из трубы составляют соответственно 4,1 и 1.

Значение скоростного напора определяется по соотношению:

w2/(2·g) = 2,02/(2·9,81) = 0,204 м

Потери напора воды на местные сопротивления составят:

∑ζМС·[w2/(2·g)] = (4,1 1)·0,204 = 1,04 м

Суммарные потери напора носителя на сопротивление трению и местные сопротивления рассчитываются по уравнению общего напора для насоса (геометрическая высота Hг по условиям задачи равна 0):

hп = H – (p2-p1)/(ρ·g) – = 8 – ((1-1)·105)/(1000·9,81) – 0 = 8 м

Полученное значение потери напора носителя на трение составят:

8-1,04 = 6,96 м

Рассчитаем значение числа Рейнольдса для заданных условий течения потока (динамическая вязкость воды принимается равной 1·10-3 Па·с,  плотность воды – 1000 кг/м3):

Re = (w·d·ρ)/μ = (2,0·0,1·1000)/(1·10-3) = 200000

Согласно рассчитанному значению Re, причем 2320 <Re< 10/e, по справочной таблице рассчитаем коэффициент трения (для режима гладкого течения):

λ = 0,316/Re0,25 = 0,316/2000000,25 = 0,015

Преобразуем уравнение и найдем требуемую длину трубопровода из расчетной формулы потерь напора на трение:

l = (Hоб·d) / (λ·[w2/(2g)]) = (6,96·0,1) / (0,016·0,204) = 213,235 м

Ответ:требуемая длина трубопровода составит 213,235 м.

Задача 3

В производстве транспортируют воду при рабочей температуре 40°С с производственным расходом Q = 18 м3/час. Длина прямого трубопровода l = 26 м, материал – сталь. Абсолютная шероховатость (ε) принимается для стали по справочным источникам и составляет 50 мкм. Какой будет диаметр стальной трубы, если перепад давления на данном участке не превысит Δp = 0,01 мПа (ΔH = 1,2 м по воде)? Коэффициент трения принимается равным 0,026.

Исходные данные:

Расход Q = 18 м3/час = 0,005 м3/с;

длина трубопровода l=26 м;

для воды ρ = 1000 кг/м3, μ = 653,3·10-6 Па·с (при Т = 40°С);

шероховатость стальной трубыε = 50 мкм;

коэффициент трения λ = 0,026;

Δp=0,01 МПа;

ΔH=1,2 м.

Решение задачи:

Используя форму уравнения неразрывности W=Q/F и уравнение площади потока F=(π·d²)/4 преобразуем выражение Дарси – Вейсбаха:

∆H = λ·l/d·W²/(2·g) = λ·l/d·Q²/(2·g·F²) = λ·[(l·Q²)/(2·d·g·[(π·d²)/4]²)] = =(8·l·Q²)/(g·π²)·λ/d5 = (8·26·0.005²)/(9,81·3,14²)· λ/d5 = 5,376·10-5·λ/d5

Выразим диаметр:

d5 = (5,376·10-5·λ)/∆H = (5,376·10-5·0,026)/1,2 = 1,16·10-6

d = 5√1,16·10-6 = 0,065 м.

Ответ: оптимальный диаметр трубопровода составляет 0,065 м.

Задача 4

Проектируются два трубопровода для транспортировки невязкой жидкости с предполагаемой производительностью Q1 = 18 м3/час и Q2 = 34 м3/час. Трубы для обоих трубопроводов должны быть одного диаметра.

Определите эффективный диаметр труб d, подходящих под условия данной задачи.

Исходные данные:

Q1 = 18 м3/час;

Q2 = 34 м3/час.

Решение задачи:

Определим возможный интервал оптимальных диаметров для проектируемых трубопроводов, воспользовавшись преобразованным видом уравнения расхода:

d = √(4·Q)/(π·W)

Значения оптимальной скорости потока найдем из справочных табличных данных. Для невязкой жидкости скорости потока составят 1,5 – 3,0 м/с.

Для первого трубопровода с расходом Q1 = 18 м3/час возможные диаметры составят:

d1min = √(4·18)/(3600·3,14·1,5) = 0,065 м

d1max = √(4·18)/(3600·3,14·3.0) = 0,046 м

Для трубопровода с расходом 18 м3/час подходят трубы с диаметром поперечного сечения от 0,046 до 0,065 м.

Аналогично определим возможные значения оптимального диаметра для второго трубопровода с расходом Q2 = 34 м3/час:

d2min = √(4·34)/(3600·3,14·1,5) = 0,090 м

d2max = √(4·34)/(3600·3,14·3) = 0,063 м

Для трубопровода с расходом 34 м3/час возможные оптимальные диаметром могут быть от 0,063 до 0,090 м.

Пересечение двух диапазонов оптимальных диаметров находится в интервале от 0,063 м до 0,065 м.

Ответ: для двух трубопроводов подходят трубы диаметром 0,063–0,065 м.

Задача 5

В трубопроводе диаметром 0,15 м при температуре Т = 40°C движется поток воды производительностью 100 м3/час. Определите режим течения потока воды в трубе.

Дано:

диаметр трубы d = 0,25 м;

расход Q = 100 м3/час;

μ = 653,3·10-6 Па·с (по таблице при Т = 40°С);

ρ = 992,2 кг/м3 (по таблице при Т = 40°С).

Решение задачи: 

Режим течения потока носителя определяется по значению числа Рейнольдса (Re). Для расчета Re определим скорость движения потока жидкости в трубе (W), используя уравнение расхода:

W = Q·4/(π·d²) = [100/3600] · [4/(3,14·0,25²)] = 0,57 м/c

Значение числа Рейнольдса определим по формуле:

Re = (ρ·W·d)/μ = (992,2·0,57·0,25) / (653,3·10-6) = 216422

Критическое значение критерия Reкр по справочным данным равно 4000. Полученное значение Re больше указанного критического, что говорит о турбулентном характере течения жидкости при заданных условиях.

Ответ: режим потока воды – турбулентный.