Температурный график котла

График температурного режима отопления в зимнее время

Каждая система отопления имеет определенные характеристики. К ним относят мощность, теплоотдачу и температурный режим работы. Они определяют эффективность работы, напрямую влияя на комфорт проживания в доме. Как правильно выбрать температурный график и режим отопления, его расчет?

Распределение температуры в помещении

Температурный график работы системы отопления вычисляется по нескольким параметрам. От выбранного режима зависит не только степень нагрева помещений, но и расход теплоносителя. Это же влияет на текущие затраты по обслуживанию отопления.

Составленный график температурного режима отопления зависит от нескольких параметров. Главным из них является уровень нагрева воды в магистралях. Он же, в свою очередь, состоит из следующих характеристик:

  • Температура в подающем и обратном трубопроводе. Замеры выполняются в соответствующих патрубках котла;
  • Характеристики степени нагрева воздуха в помещении и на улице.

∆T=Tвх-Tоб

Где Tвх – температура воды в подающей магистрали, Tоб – степень нагрева воды в обратной трубе.

Для увеличения теплоотдачи системы отопления необходимо повысить первое значение. Для уменьшения расхода теплоносителя ∆t должна быть минимальной. Именно это и является основной сложностью, так как температурный график котельной отопления напрямую зависит от внешних факторов – тепловых потерь в здании, воздуха на улице.

Для оптимизации мощности отопления необходимо сделать теплоизоляцию наружных стен дома. Этим уменьшатся тепловые потери и расход энергоносителя.

Неравномерное распределение тепла в радиаторе

Для определения оптимального температурного режима необходимо учитывать характеристики компонентов отопления – радиаторов и батарей. В частности – удельную мощность (Вт/см²). Это напрямую скажется на тепловой отдаче нагретой воды воздуху в помещение.

Также необходимо сделать ряд предварительных расчетов. При этом учитываются характеристики дома и отопительных приборов:

  • Коэффициент сопротивления теплопередачи наружных стен и оконных конструкций. Оно должно быть не менее 3, 35 м²*С/Вт. Зависит от климатических особенностей региона;
  • Поверхностная мощность радиаторов.

Руд=Р/Fакт

Где Р – максимальная мощность, Вт, Fакт – площадь радиатора, см².

Зависимость тепловой отдачи от температуры на улице

Согласно полученным данным составляется температурный режим для отопления и график теплоотдачи в зависимости от температуры на улице.

Недельный программатор является оптимальным температурным регулятором отопления. С его помощью можно максимально автоматизировать работу всей системы.

Для централизованного теплоснабжения температурный режим системы отопления зависит от характеристик системы. В настоящее время есть несколько видов параметров теплоносителя, поступающего к потребителям:

  • 150°С/70°С. Для нормализации температуры воды с помощью элеваторного узла происходит ее смешивание с охлажденным потоком. В данном случае можно составить индивидуальный температурный график отопительной котельной для конкретного дома;
  • 90°С/70°С. Свойственен для небольших частных отопительных систем, рассчитанных для теплоснабжения нескольких многоквартирных домов. В этом случае можно не устанавливать смесительный узел.

Температурный график работы отопления

Температурный график котла

В обязанность коммунальных служб входит расчет температурного отопительного графика и контроль его параметров. При этом степень нагрева воздуха в жилых помещениях должна быть на уровне 22°С. Для нежилых этот показатель немного ниже – 16°С.

Для централизованной системы составление корректного температурного графика котельной отопления требуется для обеспечения оптимальной комфортной температуры в квартирах. Основная проблема заключается в отсутствии обратной связи – невозможно регулировать параметры теплоносителя в зависимости от степени нагрева воздуха в каждой квартире. Именно поэтому составляется температурный график отопительной системы.

Копию графика отопления можно потребовать в Управляющей Компании. С его помощью можно контролировать качество поставляемых услуг.

Делать аналогичные расчеты для автономных систем теплоснабжения частного дома зачастую не нужно. Если в схеме предусмотрены комнатные и уличные температурные датчики – информация о них будет поступать в блок управления котлом.

Поэтому для уменьшения расхода энергоносителя чаще всего выбирают низкотемпературный режим работы отопления. Он характеризуется относительно небольшим нагревом воды (до 70°С) и высокой степенью ее циркуляции. Это необходимо для равномерного распределения тепла по всем отопительным приборам.

Для реализации подобного температурного режима системы отопления потребуется выполнение следующих условий:

  • Минимальные тепловые потери в доме. Однако при этом не нужно забывать о нормальном воздухообмене – обустройство вентиляции обязательно;
  • Высокая тепловая отдача радиаторов;
  • Установка автоматических регуляторов температуры в отоплении.

Если же есть необходимость выполнить корректный расчет работы системы- рекомендуется воспользоваться специальными программными комплексами. Для самостоятельного вычисления необходимо учесть слишком много факторов. Но с их помощью можно составить примерные температурные графики режимов отопления.

График 150/70 График 90/70 График 80/60 График 70/55

Однако следует учитывать, что точный расчет температурного графика теплоснабжения делается для каждой системы индивидуально. В таблицах приведены рекомендованные значения степени нагрева теплоносителя в подающей и обратной трубе в зависимости от температуры на улице. При выполнении вычислений не учитывались характеристики здания, климатические особенности региона. Но даже несмотря на это их можно использовать в качестве основы для создания температурного графика отопительной системы.

Температурный график котла

Максимальная нагрузка системы не должна сказываться на качестве работы котла. Поэтому рекомендуется приобретать его с запасом мощности на 15-20%.

Даже у самого точного температурного графика котельной отопления в процессе работы будут наблюдаться отклонения расчетных и фактических данных. Это связано с особенностями эксплуатации системы. Какие факторы могут влиять на текущий температурный режим теплоснабжения?

  • Загрязнение трубопроводов и радиаторов. Во избежание этого следует проводить периодическую очистку системы отопления;
  • Неправильная работа регулирующей и запорной арматуры. Обязательно выполняется проверка работоспособности всех компонентов;
  • Нарушение режима функционирования котла – резкие скачки температуры как следствие – давления.

Поддержание оптимального температурного режима системы возможно только при правильном выборе ее компонентов. Для этого следует учитывать их эксплуатационные и технические свойства.

Рассматривается работа в новых условиях системы теплоснабжения, созданной на протяжении десятков лет по современным для периода строительства нормам. Проектный температурный график качественного регулирования сезонной нагрузки 150-70 °С. Считается, что в момент ввода в работу система теплоснабжения выполняла свои функции в точности.

В результате анализа системы уравнений, описывающих процессы во всех звеньях системы теплоснабжения, определяется ее поведение при максимальной температуре воды в подающей линии 115 °С при расчетной температуре наружного воздуха, коэффициентах смешения элеваторных узлов 2,2.

– проектное значение расхода в соответствии с графиком 150-70 °С и заявленной нагрузкой отопления, вентиляции;

Температурный график котла

– значение расхода, обеспечивающее расчетную температуру воздуха в помещениях в расчетных условиях по температуре наружного воздуха;

– фактическое максимально возможное значение расхода сетевой воды с учетом установленных сетевых насосов.

Определим, как изменится средняя температура в помещениях при температуре сетевой воды в подающей линии to1=115 °С, проектном расходе сетевой воды на отопление (будем считать, что вся нагрузка отопительная, так как вентиляционная нагрузка такого же типа) , исходя из проектного графика 150-70 °С, при температуре наружного воздуха tн.о=-25 °С. Считаем, что на всех элеваторных узлах коэффициенты смешения u расчетные и равны

, (1)

где – среднее значение коэффициента теплопередачи всех приборов отопления с общей площадью теплообмена F, – средний температурный перепад между теплоносителем приборов отопления и температурой воздуха в помещениях, Go – расчетный расход сетевой воды, поступающий в элеваторные узлы, Gп – расчетный расход воды, поступающий в приборы отопления, Gп=(1 u)Go, с – удельная массовая изобарная теплоемкость воды, – среднее проектное значение коэффициента теплопередачи здания с учетом транспорта тепловой энергии через наружные ограждения общей площадью А и затрат тепловой энергии на нагрев нормативного расхода наружного воздуха.

При пониженной температуре сетевой воды в подающей линии to1=115 °C при сохранении проектного воздухообмена происходит снижение средней температуры воздуха в помещениях до величины tв. Соответствующая система уравнений для расчетных условий по наружному воздуху будет иметь вид

, (2)

Относительное снижение тепловой мощности системы отопления равно

Температурный график подачи теплоносителя в систему отопления

Температурный график котла

Каждая управляющая компания стремиться к достижению экономичных затрат на обогрев многоквартирного дома. К тому же пытаются прийти жильцы частных домов.

Этого можно достичь, если составить температурный график, в котором будет отражена зависимость выдаваемого носителями тепла от погодных условий на улице.

Правильное использование этих данных позволяют оптимально распределять горячую воду и отопление потребителям.

В теплоносителе не должна поддерживаться один и тот же режим работы, ведь за пределами квартиры температура меняется. Именно ею нужно руководствоваться и в зависимости от нее менять температуру воды в объектах отопления. Зависимость температуры теплоносителя от наружной температуры воздуха составляется специалистами-технологами.

Для его составления учитываются значения, имеющиеся у теплоносителя и у температуры воздуха снаружи. Во время проектирования любого здания должны учитываться размер поставленного в нем обеспечивающего тепло оборудования, размеры самого здания и сечения, имеющиеся у труб. В высотном здании жильцы не могут самостоятельно увеличить или уменьшить температуру, так как она подается из котельной.

Важно! Температурный график составляется таким образом, чтобы при любой температуре воздуха на улице в квартирах поддерживался стабильный оптимальный уровень отопления на уровне 22 °C.

Благодаря ему даже самые суровые морозы становятся не страшны, потому что системы отопления окажутся к ним готовы. Если на улице -15 °C, то достаточно отследить значение показателя, чтобы узнать, какой будет температура воды в системе отопления в этот момент.

Чем уличная погода будет суровее, тем горячее должна оказаться вода внутри системы.

Но уровень отопления, поддерживающийся внутри помещений, зависит не только от теплоносителя:

  • Температура на улице;
  • Наличие и сила ветра — сильные его порывы значительно отражаются на теплопотерях;
  • Теплоизоляция — качественно обработанные конструктивные части здания помогают сохранить тепло в здании. Это выполняется не только во время строительства дома, но и отдельно по желанию собственников.

Температурный график теплоснабжения относится к графикам несущих отопление трубопроводов, которые регулируются при помощи централизованной системы и разделяют нагрузку отопления. Система может быть как замкнутой, так и открытой. В случае, когда система замкнутая, то идет только к подключенным к тепловой сети объектам отопления.

В соответствии со СНИП, отопление в помещении должно поддерживаться на уровне от 18 до 25 °C.

 СНИП дошкольных и школьных учебных заведений обычно жестче, так как температура должна быть постоянной и не снижаться ниже 22°C .

В образовательных учреждениях строго следят и за исполнением санитарных норм — трубы не могут быть покрыты плесенью. Чтобы произвести расчет температурного графика, необходимо знать значения нескольких показателей:

  • Наружное значение температуры воздуха;
  • В жилых комнатах;
  • В подающей части трубопровода;
  • В обратной части трубопровода;
  • В трубопроводе на месте выхода из здания.

Помимо этих данных, нужно знать, какая тепловая нагрузка является номинальной. Для жилых домов подобный график отопления составляет 105/70 и 95/70. Первый из показателей отражает температуру, которая должна быть на подаче воды в отопительную систему, второй — на выходе из нее или обратной трубе.

Результаты, которые получились при замерах, нужно внести в таблицу. Основным показателем для составления таблицы является наружная температура. Составлять ее нужно таким образом, чтобы максимальные данные отопительных приборов — 95/70, обеспечивали нагрев помещений.

 Температурный режим, который должен поддерживаться в квартирах, закреплен в статье ЖК РФ и Постановлении Госстандарта.

Важно знать! Принимая полученные данные, строится график, в котором по одной оси координат поднимающуюся температуру подаваемой в систему воды, по иной оси координат — температура воздуха снаружи. Все данные вносятся в график в градусах Цельсия. А результаты оформляются в виде таблицы с данными нормы при разных значениях температур.

Температурный график котла

Подобный расчет температур, поддерживаемых в жилом помещении, производится управляющей компанией для каждого высотного или двухэтажного дома отдельно. Учитываются все показатели, теплоизоляция внешних частей отопления и иные значительные моменты.

Построенный по всем правилам график отопления поможет не только определять рабочие параметры системы в каждый момент времени, но и оценивать эффективность работы теплоносителя. Построение подобного графика позволяет также определять количество нагрузки на отопительную систему.

Для того, чтобы рассчитать оптимальный температурный режим, нужно учесть и характеристики, имеющиеся у отопительных приборов — батарей и радиаторов.

Важнее всего необходимо посчитать их удельную мощность, она будет выражаться в Вт/см2. Это будет сказываться самым прямым образом на отдаче тепла от нагретой воды к нагреваемому воздуху в помещении.

Важно учесть их поверхностную мощность и коэффициент сопротивления, имеющийся у оконных проемов и наружных стен.

Погода на улице, С на вводе в здание, С Обратная труба, С
10 30 25
5 44 37
57 46
-5 70 54
-10 83 62
-15 95 70

Грамотное использование теплоносителя подразумевает попытки жителей дома уменьшить разницу температур между трубой входа и выхода. Это может быть строительная работа по утеплению стены снаружи или теплоизоляция внешних теплоснабжающих труб, утепление перекрытий над холодным гаражом или подвалом, утепление внутренней части дома или несколько выполняемых одновременно работ.

Отопление в радиаторе также должна соответствовать нормам. В центральных отопительных системах обычно варьируется от 70 С до 90 С в зависимости от температуры воздуха на улице. Важно учитывать, что в угловых комнатах не может быть менее 20 С, хотя в иных комнатах квартиры допускается снижение до 18 С.

Если на улице температура снижается до -30 С, то в комнатах отопление должно подняться на 2 С. В остальных комнатах тоже должна вырасти температура при условии, что в комнатах разного назначения она может быть разной. Если в помещении находится ребенок, то она может колебаться от 18 С до 23 С.

В кладовых и коридорах отопление может варьироваться от 12 С до 18 С.

Важно отметить! Учитывается среднесуточная температура — если ночью держится температура примерно -15 С, а днем — -5 С, то считаться будет по значению -10 С. Если в ночное время держалось около -5 С, а в дневное время она поднялась до 5 С, то отопление учитывается по значению 0 С.

Для того, чтобы доставить потребителю оптимальное ГВС, ТЭЦ должны отправлять ее максимально горячей. Теплотрассы всегда настолько длинные, что их протяженность можно измерять в километрах, а протяженность по квартирам измеряется и вовсе в тысячах квадратных метров.

Какой бы ни была теплоизоляция труб, тепло теряется по пути к пользователю. Поэтому необходимо нагреть воду максимально. Однако, вода не может быть нагрета больше, чем до точки кипения. Поэтому был найден выход — увеличить давление.

Важно знать! При его повышении смещается в сторону увеличения температура кипения воды. Как следствие — до потребителя она доходит действительно горячей. При увеличении давления не страдают стояки, смесители и краны, а все квартиры до 16 этажа можно обеспечить ГВС без дополнительных насосов. В теплотрассе обычно вода содержит 7—8 атмосфер, верхняя граница обычно имеет 150 с запасом.

Температура кипения Давление
100 1
110 1,5
119 2
127 2,5
132 3
142 4
151 5
158 6
164 7
169 8

Подача горячей воды в зимнее время года должна быть непрерывной. Исключения из этого правила составляют аварии на теплоснабжения. Отключить горячее водоснабжение могут только в летний период для профилактических работ. Такие работы проводятся как в системах теплоснабжения закрытого типа, так и в системах открытого типа.

Рассмотрим структуру затрат тепловой мощности системы отопления жилого дома. Основными слагаемыми тепловых потерь, компенсируемых поступлением теплоты от приборов отопления, являются трансмиссионные потери через наружные ограждения, а также затраты на нагрев наружного воздуха, поступающего в помещения. Расход свежего воздуха для жилых зданий определяется требованиями санитарно-гигиенических норм, которые приведены в разделе 6.

В жилых домах система вентиляции, как правило, естественная. Норма расхода воздуха обеспечивается периодическим открытием форточек и створок окон. При этом следует иметь в виду, что с 2000 г. существенно возросли требования к теплозащитным свойствам наружных ограждений, прежде всего, стен (в 2…3 раза).

Из практики разработки энергетических паспортов жилых зданий следует, что для зданий постройки с 50-х по 80-е годы прошлого века в центральном и северо-западном регионах доля тепловой энергии на нормативную вентиляцию (инфильтрацию) составляла 40…45%, для зданий, выстроенных позднее, 45…55%.

До появления стеклопакетов регулирование воздухообмена производилось форточками и фрамугами, причем, в холодные дни частота их открывания снижалась. При широком распространении стеклопакетов обеспечение нормативного воздухообмена стало еще большей проблемой. Это связано с уменьшением в десятки раз неконтролируемой инфильтрации через щели и с тем, что частое проветривание с помощью открытия створок окон, которое только и может обеспечить нормативный воздухообмен, по факту не происходит.

возрастает относительная влажность, образуется конденсат на остеклении, появляется плесень, возникают стойкие запахи, повышается содержание углекислого газа в воздухе, что в совокупности привело к появлению термина “синдром больных зданий”. В отдельных случаях из-за резкого снижения воздухообмена возникает разрежение в помещениях, приводящее к опрокидыванию движения воздуха в вытяжных каналах и к поступлению холодного воздуха в помещения, перетеканию грязного воздуха из одной квартиры в другую, обмерзанию стенок каналов.

Как следствие, перед строителями возникает проблема в части использования более совершенных систем вентиляции, способных обеспечить экономию затрат на отопление. В связи с этим необходимо применять системы вентиляции с регулируемым притоком и удалением воздуха, системы отопления с автоматическим регулированием подачи тепла на приборы отопления (в идеале – системы с поквартирным подключением), герметичные окна и входные двери в квартиры.

Температурный график отопления в жилом доме — СНиП и таблица системы

Такое соотношение является важным основанием для работы предприятий, которые обеспечивают город теплом.

Для расчета был применен показатель, в основе которого лежит среднедневная температура пяти наиболее холодных дней в году.

График, в котором указывается температура теплоносителя в зависимости от наружной температуры, позволяет самым оптимальным образом распределить между потребителями многоквартирного дома не только тепло, но и горячую воду.

Температурный график подачи тепла в зависимости от наружного воздуха

Регулирование тепла в многоквартирном доме в отопительный период может осуществляться двумя методами:

  • Изменением расхода воды определенной постоянной температуры. Это количественный метод.
  • Изменением температуры теплоносителя при постоянном объеме расхода. Это качественный метод.

Экономным и практичным является второй вариант, при котором соблюдается режим температуры в помещении независимо от погоды. Подача достаточного тепла в многоквартирный дом будет стабильной, даже если отмечается резкий перепад температур на улице.

При понижении температурного показателя на улице осуществляется передача данных на котельную и автоматически увеличивается градус теплоносителя.

Конкретная таблица соотношения показателей температуры на улице и теплоносителя зависит от таких факторов, как климат, оборудования котельных, технико-экономических показателей.

Температурный график представляет собой зависимость степени нагрева воды в системе от температуры холодного наружного воздуха. После необходимых вычислений результат представляют в виде двух чисел. Первое означает температуру воды на входе в систему теплоснабжения, а вторая на выходе.

Например, запись 90-70ᵒС означает, что при заданных климатических условиях для отопления определенного здания понадобится, чтобы на входе в трубы теплоноситель имел температуру 90ᵒС, а на выходе 70ᵒС.

Все значения представляются для температуры воздуха снаружи по наиболее холодной пятидневке. Данная расчетная температура принимается по СП «Тепловая защита зданий». Внутренняя температура для жилых помещений по нормам принимается 20ᵒС. График обеспечит правильную подачу теплоносителя в трубы отопления. Это позволит избежать переохлаждения помещений и нерационального расхода ресурсов.

Температурный график необходимо разрабатывать для каждого населенного пункта. Он позволяет обеспечиться наиболее грамотную работу системы отопления, а именно:

  1. Привести в соответствие тепловые потери во время подачи горячей воды в дома со среднесуточной температурой наружного воздуха.
  2. Предотвратить недостаточный нагрев помещений.
  3. Обязать тепловые станции поставлять потребителям услуги, соответствующие технологическим условиям.

Такие вычисления необходимы, как для крупных отопительных станций, так и для котельных в небольших населенных пунктах. В этом случае результат расчетов и построений будет называться график котельной.

Температурный график подачи тепла в зависимости от наружного воздуха

По завершении расчетов необходимо добиться вычисленной степени нагрева теплоносителя. Достигнуть ее можно несколькими способами:

  • количественным;
  • качественным;
  • временным.

В первом случае изменяют расход воды, поступающей в отопительную сеть, во втором регулируют степень нагрева теплоносителя. Временный вариант предполагает дискретную подачу горячей жидкости в тепловую сеть. Для центральной системы теплоснабжения наиболее характерен качественный, способ при этом объем воды, поступающий в отопительный контур, остается неизменным.

В зависимости от назначения тепловой сети способы выполнения отличаются. Первый вариант — нормальный график отопления. Он представляет собой построения для сетей, работающих только на отопление помещений и регулируемых централизованно.

Повышенный график рассчитывается для тепловых сетей, обеспечивающих отопление и снабжение горячей водой. Он строится для закрытых систем и показывает суммарную нагрузку на систему подачи горячей воды.

Скорректированный график также предназначен для сетей, работающих и на отопление, и на нагрев. Здесь учитываются тепловые потери при прохождении теплоносителя по трубам до потребителя.

Построенная прямая линия зависит от следующих значений:

  • нормируемая температура воздуха в помещении;
  • температура наружного воздуха;
  • степень нагрева теплоносителя при поступлении в систему отопления;
  • степень нагрева теплоносителя на выходе из сетей здания;
  • степень теплоотдачи отопительных приборов;
  • теплопроводность наружных стен и общие тепловые потери здания.

Чтобы выполнить грамотный расчет, необходимо вычислить разницу между температурами воды в прямой и обратной трубе Δt. Чем выше значение в прямой трубе, тем лучше теплоотдача системы отопления и выше температура внутри помещений.

Чтобы рационально и экономно расходовать теплоноситель, необходимо добиться минимально возможного значения Δt. Это можно обеспечить, например, проведением работ по дополнительному утеплению наружных конструкций дома (стен, покрытий, перекрытий над холодным подвалом или техническим подпольем).

В первую очередь необходимо получить все исходные данные. Нормативные значения температур наружного и внутреннего воздуха принимаются по СП «Тепловая защита зданий». Для нахождения мощности отопительных приборов и тепловых потерь потребуется воспользоваться следующими формулами.

Исходными данными в этом случае станут:

  • толщина наружных стен;
  • теплопроводность материала, из которого изготовлены ограждающие конструкции (в большинстве случаев указывается производителем, обозначается буквой λ);
  • площадь поверхности наружной стены;
  • климатический район строительства.

В первую очередь находят фактическое сопротивление стены теплопередаче. В упрощенном варианте можно его найти как частное толщины стены и ее теплопроводности. Если наружная конструкция состоит из нескольких слоев, по отдельности находят сопротивление каждого из них и складывают полученные значения.

Q = F*(1/R0)*(tвнутр. воздуха-tнаружн. воздуха)

Здесь Q – это тепловые потери в килокалориях, а F – площадь поверхности наружных стен. Для более точного значения необходимо учесть площадь остекления и его коэффициент теплопередачи.

Руд = Рmax/Fакт

На основе полученных значений подбирается температурный режим отопления и строится прямая теплоотдачи. По одной оси наносятся значения степени нагрева подаваемой в систему отопления воды, а по другой температура наружного воздуха. Все величины принимаются в градусах Цельсия. Результаты расчета сводятся в таблицу, в которой указаны узловые точки трубопровода.

Проводить вычисления по методике достаточно сложно. Для выполнения грамотного расчета лучше всего воспользоваться специальными программами. Для каждого здания такой расчет выполняется в индивидуальном порядке управляющей компанией. Для примерного определения воды на входе в систему можно воспользоваться существующими таблицами.

  1. Для крупных поставщиков тепловой энергии используют параметры теплоносителя 150-70ᵒС, 130-70ᵒС, 115-70ᵒС.
  2. Для небольших систем на несколько многоквартирных домов применяются параметры 90-70ᵒС (до 10 этажей), 105-70ᵒС (свыше 10 этажей). Может также быть принят график 80-60ᵒС.
  3. При обустройстве автономной системы отопления для индивидуального дома достаточно контроля над степенью нагрева с помощью датчиков, график можно не строить.

Выполненные мероприятия позволяют определять параметры теплоносителя в системе в определенный момент времени. Анализируя совпадение параметров с графиком можно проверять эффективность отопительной системы. В таблице температурного графика указывается также степень нагрузки на систему отопления.

Экономичный расход энергоресурсов в отопительной системе, может быть достигнут, если выполнять некоторые требования. Одним из вариантов, является наличие температурной диаграммы, где отражается отношение температуры, исходящей от источника отопления к внешней среде. Значение величин дают возможность оптимально распределять тепло и горячую воду потребителю.

Высотные дома подключены в основном к центральному отоплению. Источники, которые передают тепловую энергию, являются котельные или ТЭЦ. В качестве теплоносителя используется вода. Её нагревают до заданной температуры.

Пройдя полный цикл по системе, теплоноситель, уже охлаждённый, возвращается к источнику и наступает повторный нагрев. Соединяются источники с потребителем тепловыми сетями. Так как окружающая среда меняет температурный режим, следует регулировать тепловую энергию, чтобы потребитель получал необходимый объём.

Регулирование тепла от центральной системы можно производить двумя вариантами:

  1. Количественный. В этом виде изменяется расход воды, но температуру она имеет постоянную.
  2. Качественный. Меняется температура жидкости, а расход её не изменяется.

В наших системах применяется второй вариант регулирования, то есть качественный. Здесь есть прямая зависимость двух температур: теплоносителя и окружающей среды. И расчёт ведётся таким образом, чтобы обеспечить тепло в помещении 18 градусов и выше.

Отсюда, можно сказать, что температурный график источника представляет собой ломанную кривую. Изменение её направлений зависит от разниц температур (теплоносителя и наружного воздуха).

График зависимости может быть различный.

Температурный график подачи тепла в зависимости от наружного воздуха

Конкретная диаграмма имеет зависимость от:

  1. Технико-экономических показателей.
  2. Оборудования ТЭЦ или котельной.
  3. Климата.

Высокие показатели теплоносителя обеспечивают потребителя большой тепловой энергией.

Применяется также, диаграмма возвращённого теплоносителя. Котельная или ТЭЦ по такой схеме может оценить КПД источника. Он считается высоким, когда возвращённая жидкость поступает охлаждённая.

Температурный график тепловой сети — расчет и составление графика

Таблица температурного графика, по которой должна осуществляться оптимальная работа котла, показывает, при какой температуре окружающего мира и на сколько котельная должна повышать градус энергии для источников тепла в доме.

Чтобы измерить показатель теплоносителя, необходимо слить немного воды с радиатора и проверить ее градус тепла. Также успешно используются тепловые датчики, приборы учета тепла, которые можно установить дома.

Датчик является обязательным оборудованием и городских котельных, и ИТП (индивидуальных тепловых пунктов).

Температурный график подачи тепла в зависимости от наружного воздуха

Без таких приборов невозможно сделать работу отопительной системы экономичной и продуктивной. Измерение теплоносителя осуществляется и в системах Гвс.

Ниже приводится оценка фактического снижения заявленной расчетной отопительной нагрузки, вызванная влиянием различных факторов.

Повышение расчетной температуры наружного воздуха до -22 °С снижает расчетную нагрузку отопления до величины (18 22)/(18 25)х100%=93%.

Кроме того, следующие факторы приводят к снижению расчетной нагрузки отопления.

1. Замена оконных блоков на стеклопакеты, которая произошла практически повсеместно. Доля трансмиссионных потерь тепловой энергии через окна составляет около 20% от общей нагрузки отопления. Замена оконных блоков на стеклопакеты привела к увеличению термического сопротивления с 0,3 до 0,4 м2∙К/Вт, соответственно, тепловая мощность теплопотерь уменьшилась до величины: [1-0,2х(0,4-0,3)/0,3]х100%=93,3%.

[1-0,45х(1,0-0,35)/1,0]х100%=70,75%.

3. Вентиляционная нагрузка разными потребителями востребована случайным образом, поэтому, как и нагрузка ГВС для теплоисточника ее величина суммируется не аддитивно, а с учетом коэффициентов часовой неравномерности. Доля максимальной нагрузки вентиляции в составе заявленной нагрузки отопления составляет 0,45х0,5/1,0=0,225 (22,5%).

Коэффициент часовой неравномерности оценочно примем таким же, как и для ГВС, равным Kчас.вент=2,4. Следовательно, общая нагрузка систем отопления для теплоисточника с учетом снижения вентиляционной максимальной нагрузки, замены оконных блоков на стеклопакеты и неодновременности востребования вентиляционной нагрузки составит величину 0,933х(0,55 0,225/2,4)х100%=60,1% от заявленной нагрузки.

Температурный график подачи тепла в зависимости от наружного воздуха

4. Учет повышения расчетной температуры наружного воздуха приведет к еще большему падению расчетной нагрузки отопления.

5. Выполненные оценки показывают, что уточнение тепловой нагрузки систем отопления может привести к ее снижению на 30…40%. Такое снижение нагрузки отопления позволяет ожидать, что при сохранении проектного расхода сетевой воды расчетная температура воздуха в помещениях может быть обеспечена при реализации “срезки” температуры прямой воды при 115 °С для низких температур наружного воздуха (см. результаты 3.2).

Приведенные оценки носят иллюстративный характер, но из них следует, что, исходя из современных требований нормативной документации, можно ожидать как существенного снижения суммарной расчетной нагрузки отопления существующих потребителей для теплового источника, так и технически обоснованного режима работы со “срезкой” температурного графика регулирования сезонной нагрузки на уровне 115°С.

Следует иметь в виду, что качественное регулирование сезонной нагрузки не является устойчивым с точки зрения распределения тепловой мощности по приборам отопления для вертикальных однотрубных систем отопления. Поэтому во всех расчетах, приводимых выше, при обеспечении средней расчетной температуры воздуха в помещениях будет иметь место некоторое изменение температуры воздуха в помещениях по стояку в отопительный период при различной температуре наружного воздуха [5].

От чего зависит?

Температурная кривая зависит от двух величин: наружного воздуха и теплоносителя. Морозная погода ведёт за собой увеличение градуса теплоносителя. При проектировании центрального источника учитывается размер оборудования, здания и сечение труб.

Величина температуры, выходящей из котельной, составляет 90 градусов, для того, чтобы при минусе 23°C, в квартирах было тепло и имело величину в 22°C. Тогда обратная вода возвращается на 70 градусов. Такие нормы соответствуют нормальному и комфортному проживанию в доме.

Анализ и наладка режимов работы производится при помощи температурной схемы. Например, возвращение жидкости с завышенной температурой, будет говорить о высоких расходах теплоносителя. Дефицитом расхода будут считаться заниженные данные.

Температурный график подачи тепла в зависимости от наружного воздуха

Раньше, на 10 ти этажные постройки, вводилась схема с расчётными данными 95-70°C. Здания выше имели свою диаграмму 105-70°C. Современные новостройки могут иметь другую схему, на усмотрение проектировщика. Чаще, встречаются диаграммы 90-70°C, а могут быть и 80-60°C.

Температурный график 95-70

Как рассчитывается?

Выбирается метод регулирования, затем делается расчёт. Во внимание берётся расчётно-зимний и обратный порядок поступления воды, величина наружного воздуха, порядок в точке излома диаграммы. Существуют две диаграммы, когда в одной из них рассматривается только отопление, во второй отопление с потреблением горячей воды.

Для примера расчёта, воспользуемся методической разработкой «Роскоммунэнерго».

Исходными данными на теплогенерирующую станцию будут:

  1. Тнв – величина наружного воздуха.
  2. Твн – воздух в помещении.
  3. Т1 – теплоноситель от источника.
  4. Т2 – обратное поступление воды.
  5. Т3 – вход в здание.
  • Мы рассмотрим несколько вариантов подачи тепла с величиной 150, 130 и 115 градусов.
  • При этом, на выходе они будут иметь 70°C.
  • Полученные результаты сносятся в единую таблицу, для последующего построения кривой:

Температурный график подачи тепла в зависимости от наружного воздуха

Итак, мы получили три различные схемы, которые можно взять за основу. Диаграмму правильней будет рассчитывать индивидуально на каждую систему. Здесь мы рассмотрели рекомендованные значения, без учёта климатических особенностей региона и характеристик здания.

Если в доме автономное отопление, то здесь расчёт диаграммы не требуется. Наличие уличных и комнатных датчиков, дают возможность передавать информацию на программное управление котла.

Чтобы уменьшить расход электроэнергии, достаточно выбрать низкотемпературный порядок в 70 градусов и будет обеспечиваться равномерное распределение тепла по отопительному контуру.

Котёл следует брать с запасом мощности, чтобы нагрузка системы не влияла на качественную работу агрегата.

Регулировка

Регулятор отопления

Температурный график подачи тепла в зависимости от наружного воздуха

Автоматический контроль обеспечивается регулятором отопления.

В него входят следующие детали:

  1. Вычислительная и согласующая панель.
  2. Исполнительное устройство на отрезке подачи воды.
  3. Исполнительное устройство, выполняющее функцию подмеса жидкости из возвращённой жидкости (обратки).
  4. Повышающий насос и датчик на линии подачи воды.
  5. Три датчика (на обратке, на улице, внутри здания). В помещении их может быть несколько.

Регулятором прикрывается подача жидкости, тем самым, увеличивается значение между обраткой и подачей до величины, предусмотренной датчиками.

Для увеличения подачи присутствует повышающий насос, и соответствующая команда от регулятора. Входящий поток регулируется «холодным перепуском». То есть происходит понижение температуры. На подачу отправляется некоторая часть жидкости, поциркулировавшая по контуру.

Датчиками снимается информация и передаётся на управляющие блоки, в результате чего, происходит перераспределение потоков, которые обеспечивают жёсткую температурную схему системы отопления.

Иногда, применяют вычислительное устройство, где совмещены регуляторы ГВС и отопления.

Регулятор на горячую воду имеет более простую схему управления. Датчик на горячем водоснабжении производит регулировку прохождения воды со стабильной величиной 50°C.

Плюсы регулятора:

  1. Жёстко выдерживается температурная схема.
  2. Исключение перегрева жидкости.
  3. Экономичность топлива и энергии.
  4. Потребитель, независимо от расстояния, равноценно получает тепло.
  1. Режим работы котлов зависит от погоды окружающей среды.
  2. Если брать различные объекты, например, заводское помещение, многоэтажный и частный дом, все будут иметь индивидуальную тепловую диаграмму.
  3. В таблице мы покажем температурную схему зависимости жилых домов от наружного воздуха:
Температура наружного воздуха Температура сетевой воды в подающем трубопроводе Температура сетевой воды в обратном трубопроводе
10 70 55
9 70 54
8 70 53
7 70 52
6 70 51
5 70 50
4 70 49
3 70 48
2 70 47
1 70 46
70 45
-1 72 46
-2 74 47
-3 76 48
-4 79 49
-5 81 50
-6 84 51
-7 86 52
-8 89 53
-9 91 54
-10 93 55
-11 96 56
-12 98 57
-13 100 58
-14 103 59
-15 105 60
-16 107 61
-17 110 62
-18 112 63
-19 114 64
-20 116 65
-21 119 66
-22 121 66
-23 123 67
-24 126 68
-25 128 69
-26 130 70

Существуют определённы нормы, которые должны быть соблюдены в создании проектов на тепловые сети и транспортировку горячей воды потребителю, где подача водяного пара должна осуществляться в 400°C, при давлении 6,3 Бар. Подачу тепла от источника рекомендуется выпускать потребителю с величинами 90/70 °C или 115/70 °C.

  • Нормативные требования следует выполнять на соблюдение утверждённой документации с обязательным согласованием с Минстроем страны.
  • Ссылка на скачивание графика
  • temperaturnyy-grafik-otopleniya (xls 26,0KB).

От чего зависит?

Причины температурных изменений

Для начала важно понять несколько моментов:

  1. Когда изменяются погодные условия, это автоматически влечет за собой изменение теплопотерь. При наступлении холодов для поддержания в жилище оптимального микроклимата тратится на порядок больше тепловой энергии, чем в теплый период. При этом уровень расходуемого тепла рассчитывается не точной температурой уличного воздуха: для этого используется т.н. «дельта» разницы между улицей и внутренними помещениями. К примеру, 25 градусов в квартире и -20 за ее стенами повлекут за собой точно такие же затраты тепла, как при 18 и -27 соответственно.
  2. Постоянство теплового потока от батарей отопления обеспечивается стабильной температурой теплоносителя. При снижении температуры в помещении будет наблюдаться некоторый подъем температуры радиаторов: этому способствует увеличение дельты между теплоносителем и воздухом в помещении. В любом случае, это не сможет адекватно компенсировать возрастание тепловых потерь посредством через стены. Объясняется это установкой ограничений для нижней границы температуры в жилище действующим СНиПом на уровне 18-22 градусов.

Логичнее всего решить возникшую проблему увеличения потерь повышением температуры теплоносителя. Важно, чтобы ее возрастание происходило параллельно снижению температуры воздуха за окном: чем там холоднее, тем большие потери тепла нуждаются в восполнении.

Для облегчения ориентации в этом вопросе на каком-то этапе было решено создать специальные таблицы согласования обоих значений.

Исходя из этого, можно сказать, что под температурным графиком системы отопления подразумевается выведение зависимости уровня нагрева воды в подающем и обратном трубопроводе по отношению к температурному режиму на улице.

Вышеупомянутые графики встречаются в двух разновидностях:

  1. Для сетей теплоподачи.
  2. Для системы отопления внутри дома.

Для понимания того, чем отличаются оба этих понятия, желательно для начала разобраться в особенностях работы централизованного отопления.

Температурный график подачи тепла в зависимости от наружного воздуха

Назначением этой комбинации является сообщение теплоносителю должного уровня нагрева, с последующей транспортировкой его к месту потребления. Теплотрассы обычно имеют длину в несколько десятков километров, при общей площади поверхности в десятки тысяч квадратных метров. Хотя магистральные сети и подвергаются тщательной теплоизоляции, без теплопотерь обойтись невозможно.

По ходу движения между ТЭЦ (или котельной) и жилыми помещениями наблюдается некоторое остывание технической воды.

Сам по себе напрашивается вывод: чтобы донести до потребителя приемлемый уровень нагрева теплоносителя, его необходимо подавать внутрь теплотрассы из ТЭЦ в максимально нагретом состоянии.

Повешение температуры ограничено точкой кипения. Ее можно сместить в сторону повышения температуры, если увеличивать давление в трубах.

Стандартный показатель давления в подающей трубы теплотрассы находится в пределах 7-8 атм. Данный уровень, несмотря на потери напора по ходу транспортировки теплоносителя, дает возможность обеспечить эффективную работу отопительной системы в зданиях высотой до 16 этажей. При этом дополнительные насосы обычно не нужны.

Очень важно то, что такое давление не создает опасности для системы в целом: трассы, стояки, подводки, смесительные шланги и другие узлы сохраняют свою работоспособность длительное время.

Учитывая определенный запас для верхнего предела температуры подачи, его значение берется, как 150 градусов.

Пролегание самых стандартных температурных графиков подачи теплоносителя в систему отопления проходит в промежутке между 150/70 — 105/70 (температуры подающей и обратной трассы).

Домовая система отопления характеризуется наличием ряда дополнительных ограничений:

  • Значение наибольшего нагрева теплоносителя в контуре ограничено показателем 95 градусов для двухтрубной системы и 105 для однотрубной системы отопления. Следует заметить, что дошкольные воспитательные учреждения характеризуются наличием более строгих ограничений: там температура батарей не должна подниматься выше 37 градусов. Чтобы компенсировать такое уменьшение температуры подачи, приходится наращивать число радиаторных секций. Внутренние помещения детских садов, расположенных в регионах с особо суровыми климатическими условиями, буквально напичканы батареями.
  • Желательно добиться минимальной температурной дельты графика подачи отопления между подающим и обратным трубопроводами: в противном случае степень нагрева радиаторных секций в здании будет иметь большую разницу. Для этого теплоноситель внутри системы должен двигаться максимально быстро. Однако тут есть своя опасность: из-за высокой скорости циркуляции воды внутри отопительного контура ее температура на выходе обратно в трассу будет излишне высокой. В итоге это может привести к серьезным нарушениям в работе ТЭЦ.

Для преодоления возникшей проблемы каждый дом оснащается одним или несколькими элеваторными модулями. Благодаря им поток воды из подающего трубопровода разбавляется порцией из обратки. Используя эту смесь, можно добиться быстрой циркуляции значительных объемов теплоносителя, не подвергая при этом опасности излишнего нагрева обратный трубопровод магистрали.

Система отопления внутри жилищ задается отдельным температурным графиком отопления, где учитывается наличие элеватора. Двухтрубные контуры обслуживаются отопительным температурным графиком 95-70, однотрубные — 105-70 (такие схемы почти не встречаются в многоэтажных зданиях).

  «Какая температура должна быть в батареях центрального отопления – нормы и стандарты».

Главным фактором, напрямую влияющим на составление температурного графика на отопительный сезон, выступает расчетная зимняя температура.

По ходу составления стараются добиться того, чтобы наибольшие значения (95/70 и 105/70) при максимальных морозах гарантировали нужную СНиП температуру.

Температура наружного воздуха для расчета отопления берется из специальной таблицы климатических зон.

Параметры тепловых трасс находятся в зоне ответственности руководства ТЭЦ и теплосетей. В то же время за параметры сети внутри здания отвечают работники ЖЭКа. В основном жалобы жильцов на холод касаются отклонений в нижнюю сторону. Намного реже встречаются ситуации, когда замеры внутри тепловиков свидетельствуют о повышенной температуре обратки.

Существует несколько способов нормализации параметров системы, которые можно реализовать самостоятельно:

  • Рассверливание сопла. Решить проблему занижения температуры жидкости в обратке можно путем расширения элеваторного сопла. Для этого нужно закрыть все задвижки и вентили на элеваторе. После этого модуль снимают, вытаскивают его сопло и рассверливают на 0,5-1 мм. После сборки элеватора его запускают для стравливания воздуха в обратном порядке. Паронитовые уплотнители на фланцах рекомендуется заменить резиновыми: их изготовляют по размеру фланца из автомобильной камеры.
  • Глушение подсоса. В экстремальных случаях (при наступлении сверхнизких морозов) сопло можно вообще демонтировать. В таком случае возникает угроза того, что подсос начнет выполнять функцию перемычки: чтобы это не допустить, его глушат. Для этого используется стальной блин толщиной от 1 мм. Данный способ является экстренным, т.к. это может спровоцировать скачок температуры батарей до 130 градусов.
  • Управление перепадом. Временным способом решения проблемы повышения температуры является корректировка перепада элеваторной задвижкой. Для этого необходимо перенаправить ГВС на подающую трубу: обратка при этом оснащается манометром. Входную задвижку обратного трубопровода полностью закрывают. Далее нужно понемногу открывать вентиль, постоянно сверяя свои действия с показаниями манометра.

Просто закрытая задвижка может спровоцировать остановку и разморозку контура. Снижение разницы достигается благодаря росту давления на обратке (0,2 атм./сутки). Температуру в системе необходимо проверять каждый день: она должна соответствовать отопительному температурному графику.

Основой работы каждой котельной, обслуживающей жилые, административные и другие здания, на протяжении отопительного периода является температурный график, в котором указываются нормативы показателей теплоносителя в зависимости от того, какой является фактическая наружная температура.

  • Составление графика дает возможность подготовить отопление к понижению температуры на улице.
  • Также это экономия энергоресурсов.

Современные строительные компании могут увеличивать стоимость жилья за счет использования дорогих энергосберегающих технологий при возведении многоквартирных зданий.

Несмотря на изменение строительных технологий, применение новых материалов для утепления стен и других поверхностей здания, соблюдение в системе отопления нормы температуры теплоносителя – оптимальный способ поддержать комфортные жилищные условия.

1. Проблема снижения проектного температурного графика регулирования систем теплоснабжения в масштабах страны

На протяжении последних десятилетий практически во всех городах РФ наблюдается очень значительный разрыв между фактическим и проектным температурными графиками регулирования систем теплоснабжения. Как известно, закрытые и открытые системы централизованного теплоснабжения в городах СССР проектировались при использовании качественного регулирования с температурным графиком регулирования сезонной нагрузки 150-70 °С [1].

Такой температурный график широко применялся, как для ТЭЦ, так и для районных котельных. Но, уже начиная с конца 70-х годов, появились существенные отклонения температур сетевой воды в фактических графиках регулирования от их проектных значений при низких температурах наружного воздуха. В расчетных условиях по температуре наружного воздуха температура воды в подающих теплопроводах снизилась со 150 °С до 85…115 °С.

Произведенное понижение температурного графика владельцами тепловых источников обычно официально оформлялось, как работа по проектному графику 150-70°С со “срезкой” при пониженной температуре 110…130°С. При более низких температурах теплоносителя предполагалась работа системы теплоснабжения по диспетчерскому графику. Расчетные обоснования такого перехода автору статьи не известны.

Переход на пониженный температурный график, например, 110-70 °С с проектного графика 150-70 °С должен повлечь за собой ряд серьезных последствий, которые диктуются балансовыми энергетическими соотношениями. В связи с уменьшением расчетной разности температур сетевой воды в 2 раза при сохранении тепловой нагрузки отопления, вентиляции необходимо обеспечить увеличение расхода сетевой воды для этих потребителей также в 2 раза.

Соответствующие потери давления по сетевой воде в тепловой сети и в теплообменном оборудовании теплоисточника и тепловых пунктов при квадратичном законе сопротивления вырастут в 4 раза. Необходимое увеличение мощности сетевых насосов должно произойти в 8 раз. Очевидно, что ни пропускная способность тепловых сетей, спроектированных на график 150-70 °С, ни установленные сетевые насосы не позволят обеспечить доставку теплоносителя до потребителей с удвоенным расходом в сравнении с проектным значением.

Температурный график подачи тепла в зависимости от наружного воздуха

В связи с этим совершенно ясно, что для обеспечения температурного графика 110-70 °С не на бумаге, а на деле, потребуется радикальная реконструкция как теплоисточников, так и тепловой сети с тепловыми пунктами, затраты на которую непосильны для владельцев систем теплоснабжения.

Запрет на применение для тепловых сетей графиков регулирования отпуска теплоты со “срезкой” по температурам, приведенный в п.7.11 СНиП 41-02-2003 “Тепловые сети”, никак не смог повлиять на повсеместную практику ее применения. В актуализированной редакции этого документа СП 124.13330.2012 режим со “срезкой” по температуре не упоминается вообще, то есть, прямой запрет на такой способ регулирования отсутствует.

В утвержденный Перечень национальных стандартов и сводов правил (частей таких стандартов и сводов правил), в результате применения которых на обязательной основе обеспечивается соблюдение требований Федерального закона от 30.12.2009 № 384-ФЗ “Технический регламент о безопасности зданий и сооружений” (Постановление Правительства РФ от 26.12.

Федеральный Закон № 190-ФЗ от 27 июля 2010 г. “О теплоснабжении”, «Правила и нормы технической эксплуатации жилищного фонда» (утверждены Постановлением Госстроя РФ от 27.09.2003 № 170), СО 153-34.20.501-2003 “Правила технической эксплуатации электрических станций и сетей Российской Федерации” также не запрещают регулирование сезонной тепловой нагрузки со “срезкой” по температуре.

В 90-е годы вескими причинами, которыми объясняли радикальное снижение проектного температурного графика, считались изношенность тепловых сетей, арматуры, компенсаторов, а также невозможность обеспечить необходимые параметры на тепловых источниках в связи с состоянием теплообменного оборудования. Несмотря на большие объемы ремонтных работ, проводимых постоянно в тепловых сетях и на тепловых источниках в последние десятилетия, эта причина остается актуальной и сегодня для значительной части практически любой системы теплоснабжения.

Следует отметить, что в технических условиях на присоединение к тепловым сетям большинства тепловых источников до сих приводится проектный температурный график 150-70 °С, или близкий к нему. При согласовании проектов центральных и индивидуальных тепловых пунктов непременным требованием владельца тепловой сети является ограничение расхода сетевой воды из подающего теплопровода тепловой сети в течение всего отопительного периода в строгом соответствии с проектным, а не реальным температурным графиком регулирования.

В настоящее время в стране в массовом порядке происходит разработка схем теплоснабжения городов и поселений, в которых также проектные графики регулирования 150-70 °С, 130-70 °С считаются не только актуальными, но и действительными на 15 лет вперед. При этом отсутствуют пояснения, как обеспечить такие графики на практике, не приводится хоть сколь-нибудь понятное обоснование возможности обеспечения присоединенной тепловой нагрузки при низких температурах наружного воздуха в условиях реального регулирования сезонной тепловой нагрузки.

Такой разрыв между декларируемыми и фактическими температурами теплоносителя тепловой сети является ненормальным и никак не связан с теорией работы систем теплоснабжения, приведенной, например, в [1].

1. Чем объясняется такая совокупность фактов?

Температурный график подачи тепла в зависимости от наружного воздуха

2. Можно ли не только объяснить существующее положение дел, но и обосновать, исходя из обеспечения требований современной нормативной документации, либо “срезку” температурного графика при 115°С, либо новый температурный график 115-70 (60) °С при качественном регулировании сезонной нагрузки?

3. Какие изменения можно рекомендовать в технических условиях на присоединение потребителей разного вида (жилые здания, здания общественного назначения, производственные здания) при понижении температурного графика?

Эта проблема, естественно, постоянно привлекает к себе всеобщее внимание. Поэтому появляются публикации в периодической печати, в которых даются ответы на поставленные вопросы и приводятся рекомендации по ликвидации разрыва между проектными и фактическими параметрами системы регулирования тепловой нагрузки. В отдельных городах уже проведены мероприятия по снижению температурного графика и делается попытка обобщить результаты такого перехода.

С нашей точки зрения, наиболее выпукло и ясно эта проблема обсуждается в статье Гершковича В.Ф. [2].

В ней отмечаются несколько чрезвычайно важных положений, являющихся, в том числе обобщением практических действий по нормализации работы систем теплоснабжения в условиях низкотемпературной “срезки”. Отмечается, что практические попытки увеличения расхода в сети с целью приведения его в соответствие с пониженным температурным графиком не привели к успеху.

Температурный график подачи тепла в зависимости от наружного воздуха

В то же время при сохранении проектного расхода в сети и снижении температуры воды в подающей линии даже при низких температурах наружного воздуха в ряде случаев удалось обеспечить на приемлемом уровне температуру воздуха в помещениях. Этот факт автор [2] объясняет тем, что в нагрузке отопления очень значительная часть мощности приходится на нагрев свежего воздуха, обеспечивающего нормативный воздухообмен помещений.

Реальный воздухообмен в холодные дни далек от нормативного значения, так как он не может быть обеспечен только открыванием форточек и створок оконных блоков или стеклопакетов. В статье особо подчеркивается, что российские нормы воздухообмена в несколько раз превышают нормы Германии, Финляндии, Швеции, США.

– снижение температуры воздуха в помещениях при сохранении проектного расхода воды в сети;

– повышение расхода воды в сети с целью сохранения температуры воздуха в помещениях;

– снижение мощности системы отопления за счет уменьшения воздухообмена для проектного расхода воды в сети при обеспечении расчетной температуры воздуха в помещениях;

– оценка мощности системы отопления за счет уменьшения воздухообмена для фактически достижимого повышенного расхода воды в сети при обеспечении расчетной температуры воздуха в помещениях.

2. Исходные данные для анализа

В качестве исходных данных принято, что имеется источник теплоснабжения с доминирующей нагрузкой отопления и вентиляции, двухтрубная тепловая сеть, ЦТП и ИТП, приборы отопления, калориферы, водоразборные краны. Вид системы теплоснабжения не имеет принципиального значения. Предполагается, что проектные параметры всех звеньев системы теплоснабжения обеспечивают нормальную работу системы теплоснабжения, то есть, в помещениях всех потребителей устанавливается расчетная температура tв.

р=18 °С при соблюдении температурного графика тепловой сети 150-70°С, проектном значении расхода сетевой воды, нормативном воздухообмене и качественном регулировании сезонной нагрузки. Расчетная температура наружного воздуха равна средней температуре холодной пятидневки с коэффициентом обеспеченности 0,92 на момент создания системы теплоснабжения. Коэффициент смешения элеваторных узлов определяется общепринятым температурным графиком регулирования систем отопления 95-70 °С и равен 2,2.

Следует отметить, что в актуализированной редакции СНиП “Строительная климатология” СП 131.13330.2012 для многих городов произошло повышение расчетной температуры холодной пятидневки на несколько градусов в сравнении с редакцией документа СНиП 23-01-99.

5. Трудности в реализации нормативного воздухообмена помещений

Выполненный сотрудниками СПбГПУ расчет системы вентиляции жилого дома показал следующее [7]. Естественная вентиляция в режиме свободного притока воздуха в среднем за год почти в 50% времени меньше расчетной (сечение вытяжного канала спроектировано по действующим нормам вентиляции многоквартирных жилых домов для условий Санкт-Петербурга на нормативный воздухообмен для наружной температуры 5 °С), в 13% времени вентиляция более чем в 2 раза меньше расчетной, и в 2% времени вентиляция отсутствует.

Значительную часть отопительного периода при температуре наружного воздуха менее 5 °С вентиляция превышает нормативное значение. То есть, без специальной регулировки при низкой температуре наружного воздуха обеспечить нормативный воздухообмен невозможно, при температурах наружного воздуха более 5°С воздухообмен будет ниже нормативного, если не применять вентилятор.

Рассмотрим эти изменения на примере жилых многоквартирных домов.

Температурный график подачи тепла в зависимости от наружного воздуха

В СНиП II-Л.1-62, часть II, раздел Л, глава 1, действовавших до апреля 1971 г., нормы воздухообмена для жилых комнат составляли 3 м3/ч на 1 м2 площади комнат, для кухни с электроплитами кратность воздухообмена 3, но не менее 60 м3/ч, для кухни с газовой плитой – 60 м3/ч для двухконфорочных плит, 75 м3/ч – для трехконфорочных плит, 90 м3/ч – для четырехконфорочных плит. Расчетная температура жилых комнат 18 °С, кухни 15 °С.

В СНиП II-Л.1-71, часть II, раздел Л, глава 1, действовавших до июля 1986 г., указаны аналогичные нормы, но для кухни с электроплитами исключена кратность воздухообмена 3.

В СНиП 2.08.01-85, действовавших до января 1990 г., нормы воздухообмена для жилых комнат составляли 3 м3/ч на 1 м2 площади комнат, для кухни без указания типа плит 60 м3/ч. Несмотря на разную нормативную температуру в жилых помещениях и на кухне, для теплотехнических расчетов предложено принимать температуру внутреннего воздуха 18°С.

В СНиП 2.08.01-89, действовавших до октября 2003 г., нормы воздухообмена такие же, как и в СНиП II-Л.1-71, часть II, раздел Л, глава 1. Сохраняется указание о температуре внутреннего воздуха 18 °С.

9.2 Расчетные параметры воздуха в помещениях жилого дома следует принимать по оптимальным нормам ГОСТ 30494. Кратность воздухообмена в помещениях следует принимать в соответствии с таблицей 9.1.

Температурный график подачи тепла в зависимости от наружного воздуха

Таблица 9.1

Помещение Кратность или величина

воздухообмена, м3 в час, не менее

в нерабочем

режиме

в режиме

обслуживания

Спальная, общая, детская комнаты 0,2 1,0
Библиотека, кабинет 0,2 0,5
Кладовая, бельевая, гардеробная 0,2 0,2
Тренажерный зал, бильярдная 0,2 80 м3
Постирочная, гладильная, сушильная 0,5 90 м3
Кухня с электроплитой 0,5 60 м3
Помещение с газоиспользующим оборудованием 1,0 1,0 100 м3

на плиту

Помещение с теплогенераторами и печами на твердом топливе 0,5 1,0 100 м3

на плиту

Ванная, душевая, уборная, совмещенный санузел 0,5 25 м3
Сауна 0,5 10 м3

на 1 человека

Машинное отделение лифта По расчету
Автостоянка 1,0 По расчету
Мусоросборная камера 1,0 1,0

Кратность воздухообмена во всех вентилируемых помещениях, не указанных в таблице, в нерабочем режиме должна составлять не менее 0,2 объема помещения в час.

9.3 При теплотехническом расчете ограждающих конструкций жилых зданий следует принимать температуру внутреннего воздуха отапливаемых помещений не менее 20 °С.

9.4 Система отопления и вентиляции здания должна быть рассчитана на обеспечение в помещениях в течение отопительного периода температуры внутреннего воздуха в пределах оптимальных параметров, установленных ГОСТ 30494, при расчетных параметрах наружного воздуха для соответствующих районов строительства.

Отсюда видно, что, во-первых, появляются понятия режима обслуживания помещения и нерабочего режима, во время действия которых предъявляются, как правило, очень разные количественные требования к воздухообмену. Для жилых помещений (спальни, общие комнаты, детские комнаты), составляющих значительную часть площади квартиры, нормы воздухообмена при разных режимах отличаются в 5 раз.

В актуализированной редакции СП 54.13330.2011 частично воспроизведена информация СНиП 31-01-2003 в первоначальной редакции. Нормы воздухообмена для спален, общих комнат, детских комнат при общей площади квартиры на одного человека менее 20 м2 – 3 м3/ч на 1 м2 площади комнат; то же при общей площади квартиры на одного человека более 20 м2 – 30 м3/ч на одного человека, но не менее 0,35 ч-1; для кухни с электроплитами 60 м3/ч, для кухни с газовой плитой 100 м3/ч.

Следовательно, для определения среднесуточного часового воздухообмена необходимо назначать длительность каждого из режимов, определять расход воздуха в разных помещениях в течение каждого режима и затем вычислять среднечасовую потребность квартиры в свежем воздухе, а затем и дома в целом. Многократное изменение воздухообмена в конкретной квартире в течение суток, например, при отсутствии людей в квартире в рабочее время или в выходные дни приведет к существенной неравномерности воздухообмена в течение суток.

Можно провести аналогию с неодновременным использованием нагрузки ГВС потребителями, что обязывает вводить коэффициент часовой неравномерности при определении нагрузки ГВС для теплоисточника. Как известно, его величина для значительного количества потребителей в нормативной документации принимается равной 2,4.

Аналогичное значение для вентиляционной составляющей нагрузки отопления позволяет считать, что соответствующая суммарная нагрузка также будет по факту уменьшаться, как минимум, в 2,4 раза в связи с неодновременным открытием форточек и окон в разных жилых зданиях. В общественных и производственных зданиях наблюдается аналогичная картина с тем отличием, что в нерабочее время вентиляция минимальна и определяется только инфильтрацией через неплотности в световых ограждениях и наружных дверях.

Учет тепловой инерции зданий позволяет также ориентироваться на среднесуточные значения расходов тепловой энергии на нагрев воздуха. Тем более, что в большинстве систем отопления отсутствуют термостаты, обеспечивающие поддержание температуры воздуха в помещениях. Известно также, что центральное регулирование температуры сетевой воды в подающей линии для систем теплоснабжения ведется по температуре наружного воздуха, осредняемой за период длительностью порядка 6-12 часов, а иногда и за большее время.

Следовательно, необходимо выполнить расчеты нормативного среднего воздухообмена для жилых домов разных серий с целью уточнения расчетной отопительной нагрузки зданий. Аналогичную работу необходимо проделать для общественных и производственных зданий.

Следует отметить, что указанные действующие нормативные документы распространяются на вновь проектируемые здания в части проектирования систем вентиляции помещений, но косвенно они не только могут, но и должны быть руководством к действию при уточнении тепловых нагрузок всех зданий, в том числе тех, что были выстроены по другим, приведенным выше нормам.

Разработаны и опубликованы стандарты организаций, регламентирующие нормы воздухообмена в помещениях многоквартирных жилых зданий. Например, СТО НПО АВОК 2.1-2008, СТО СРО НП СПАС-05-2013, Энергосбережение в зданиях. Расчет и проектирование систем вентиляции жилых многоквартирных зданий (Утверждено общим собранием СРО НП СПАС от 27.03.2014 г.).

В основном, в этих документах приводимые нормы соответствуют СП 54.13330.2011 при некоторых снижениях отдельных требований (например, для кухни с газовой плитой к 90(100) м3/ч не добавляется однократный воздухообмен, в нерабочее время в кухне такого типа допускается воздухообмен 0,5 ч-1, тогда как в СП 54.13330.2011 – 1,0 ч-1).

В справочном Приложении В СТО СРО НП СПАС-05-2013 приводится пример расчета требуемого воздухообмена для трехкомнатной квартиры.

– общая площадь квартиры Fобщ= 82,29 м2;

– площадь жилых помещений Fжил= 43,42 м2;

– площадь кухни – Fкх = 12,33 м2;

– площадь ванной комнаты – Fвн = 2,82 м2;

– площадь уборной – Fуб = 1,11 м2;

– высота помещений h = 2,6 м;

– на кухне установлена электроплита.

– объём отапливаемых помещений V =221,8 м3;

– объём жилых помещений Vжил = 112,9 м3;

– объём кухни Vкх = 32,1 м3;

– объём уборной Vуб = 2,9 м3;

– объём ванной комнаты Vвн = 7,3 м3.

Из приведенного расчет воздухообмена следует, что система вентиляции квартиры должна обеспечивать расчетный воздухообмен в режиме обслуживания (в режиме проектной эксплуатации) – Lтр раб = 110,0 м3/ч; в нерабочем режиме – Lтр раб = 22,6 м3/ч. Приведенные расходы воздуха соответствуют кратности воздухообмена 110,0/221,8=0,5 ч-1 для режима обслуживания и 22,6/221,8=0,1 ч-1 для нерабочего режима.

Приведенная в настоящем разделе информация показывает, что в существующих нормативных документах при разной заселенности квартир максимальная кратность воздухообмена находится в диапазоне 0,35…0,5 ч-1 по отапливаемому объему здания, в нерабочем режиме – на уровне 0,1 ч-1. Это означает, что при определении мощности системы отопления, компенсирующей трансмиссионные потери тепловой энергии и затраты на подогрев наружного воздуха, а также расхода сетевой воды на нужды отопления можно ориентироваться в первом приближении на среднее за сутки значение кратности воздухообмена жилых многоквартирных домов 0,35 ч-1.

Анализ энергетических паспортов жилых дома, разработанных в соответствии со СНиП 23-02-2003 “Тепловая защита зданий”, показывает, что при вычислении нагрузки отопления дома кратность воздухообмена соответствует уровню 0,7 ч-1, что в 2 раза превышает рекомендуемое выше значение, не противоречащее требованиям современных СТО.

Необходимо сделать уточнение отопительной нагрузки зданий, выстроенных по типовым проектам, исходя из уменьшенного среднего значения кратности воздухообмена, что будет соответствовать существующим российским нормам и позволит приблизиться к нормам ряда стран Евросоюза и США.