Гидроксид натрия (едкий натр, каустик)

Области использования гидроокиси натрия в быту

Гидроокись натрия является самой распространенной щелочью, выпускается как в жидком виде, так и в форме мелких белых гранул, практически не имеющих собственного аромата. Каустическая сода поставляется на промышленные предприятия в цистернах или другой герметически упакованной таре, в зависимости от состояния и назначения.

Основными потребителями едкого натрия на сегодняшний день являются следующие области народного хозяйства: химическая – в производстве мыла, глицерина, водорода, в качестве реагента или катализатора для химических процессов, минеральных удобрений, бытовой химии, металлургическая – для работ, связанных с добычей алюминия, цинка и титана из смешанного вторсырья;

автомобильная – каустическая сода применяется для очищения и мойки форм, используемых для выпуска автопокрышек; текстильная – с помощью раствора едкого натра обычные растительные волокна приобретают блеск и шелковистость; газовая и нефтяная – как катализатор при производстве биотоплива с отличными характеристиками;

пищевая — производство карамели, шоколада, какао, газированных напитков, хлебобулочных изделий не обходится без участия гидроокиси натрия. Имеет собственное имя в бесконечном списке пищевых добавок – E524; бумажная промышленность – каустическая сода незаменима в превращении целлюлозы в бумагу и картон.

В начале 19 века производство каустической соды (NаОН) было тесно связано с развитием производства кальцинированной соды. Эта взаимосвязь была обусловлена тем, что сырьем для химического способа получения NаОН служила кальцинированная сода, которая в виде содового раствора каустифицировалась известковым молоком.

В конце 19 века стали быстро развиваться электрохимические методы получения NаОН электролизом водных растворов NаСl. При электрохимическом способе получения одновременно с NаОН получают хлор, который находит широкое применение в промышленности тяжелого органического синтеза и в других областях промышленности, что объясняет быстрое развитие электрохимического производства NаОН.

На сегодняшний день каустическую соду получают либо путем электролиза раствора хлорида натрия (NaCl) с образованием гидроксида натрия и хлора, либо, реже, с помощью более старого способа, основанного на взаимодействии раствора кальцинированной соды с гашеной известью. Большое количество производимой в мире кальцинированной соды используется для получения каустической соды.

Na2CO3 Ca(OH)2 = CaCO3 2NaOH

Карбонат кальция выпадает в осадок, а раствор гидроксида натрия отводится в коллектор.

2NaCl 2H2O = H2 Cl2 2NaOH

Когда концентрированный раствор хлорида натрия подвергается электролизу, образуются хлор и гидроксид натрия, но они реагируют друг с другом с образованием гипохлорита натрия – отбеливающего вещества. Этот продукт, в свою очередь, особенно в кислых растворах при повышенных температурах, окисляется в электролизной камере до перхлората натрия. Чтобы избежать этих нежелательных реакций, электролизный хлор должен быть пространственно отделен от гидроксида натрия.

В большинстве промышленных установок, используемых для получения электролизной каустической соды, это осуществляется с помощью диафрагмы (диафрагменный метод), помещенной вблизи анода, на котором образуется хлор. Существуют установки двух типов: с погруженной или непогруженной диафрагмой. Камера установки с погруженной диафрагмой целиком заполняется электролитом.

Соляной раствор втекает в анодное отделение, где из него выделяется хлор, а раствор каустической соды заполняет катодное отделение. В установке с непогруженной диафрагмой раствор каустической соды отводится из катодного отделения по мере образования, так что камера оказывается пустой. В некоторых установках с непогруженной диафрагмой в пустое катодное отделение напускается водяной пар, чтобы облегчить удаление каустической соды и поднять температуру.

В диафрагменных установках получается раствор, содержащий как каустическую соду, так и соль. Большая часть соли выкристаллизовывается, когда концентрация каустической соды в растворе доводится до стандартного значения 50%. Такой «стандартный» электролизный раствор содержит 1% хлорида натрия. Продукт электролиза пригоден для многих применений, например для производства мыла и чистящих препаратов.

Мембранный метод — аналогичен диафрагменному, но анодное и катодное пространства разделены катионообменной мембраной. Мембранный электролиз обеспечивает получение наиболее чистого каустика.

Непрерывное разделение хлора и каустика можно также осуществить в установке с ртутным катодом (ртутный электролиз). Металлический натрий образует с ртутью амальгаму, которая отводится во вторую камеру, где натрий выделяется и реагирует с водой, образуя каустик и водород. Хотя концентрация и чистота соляного раствора для установки с ртутным катодом более важны, чем для установки с диафрагмой, в первой получается каустическая сода, пригодная для производства искусственного волокна. Ее концентрация в растворе составляет 50–70%. Более высокие затраты на установку с ртутным катодом оправдываются получаемой выгодой.

взаимодействуя с водой каустик, выделяет большое количество водорода и тепла, поэтому взрывоопасен; попадая на кожу, едкий натр способен привести к сильнейшим химическим ожогам, трудно поддающимся лечению. Контакт гидроокиси натрия с поверхностью глазного яблока, пусть даже кратковременный, может привести к потере зрения, попадание на слизистую – к некрозу тканей, воспалению легких, кровавой рвоте и диарее; обладает сильными коррозийными свойствами по отношению к эмалированным, оцинкованным и алюминиевым поверхностям.

Основные отличия кальцинированной соды и едкого натра

В первую очередь, это химическое строение молекул, что отражается в формуле каустика  — NaOH —  и кальцинированной соды – Na2CO3. В-вторых – кальцинированная разновидность менее агрессивна и, как следствие, не имеет таких ярко выраженных реакций с водой, металлами и органическими загрязнениями. В-третьих – она более безопасна как для человека, так и для окружающей среды.

Каустическая сода, при внимательном и осторожном обращении, при соблюдении нехитрых правил безопасности является бесценным помощником в решении многих бытовых проблем. Внимание! Перед началом работы наденьте прорезиненные перчатки, очки и плотную одежду. Для применения в быту разводите каустик только в эмалированной или пластиковой посуде, устойчивой к воздействию щелочей, при открытой форточке.

Для очистки системы в частном доме следует залить 2 кг едкого натра 4 л обычной воды из-под крана и влить аккуратно раствор в раковину, унитаз или сливное отверстие душа (ванной). Заткнуть пробкой, через час влить полтора ведра очень горячей воды и использовать систему по назначению. Для борьбы с органикой в сифонах и стояках многоквартирных домов нужно засыпать в сливное отверстие порошок каустической соды в количестве 150 граммов и очень осторожно влить туда же несколько литров кипятка.

Через четверть часа добавить еще столько же горячей воды, затем через десять минут влить уже около ведра воды, подогретой до 90 градусов. Пользоваться сливом можно только через час после завершения процедуры. Каустическая сода входит в состав многочисленной армии средств по очистке канализационных систем, в том числе является действующим веществом в геле «Крот», так как превосходно растворяет волосы, попавшие в слив и являющиеся основной причиной засоров.

Едкий натр продолжает свое воздействие на внутреннюю поверхность труб даже после многочисленных смываний, сглаживая шероховатости и неровности, задерживающие грязь и мелкие, нерастворимые частицы жидких бытовых отходов. Самой эффективной для чистки канализации является каустическая сода в гранулах, однако и она плохо справляется с остатками земли, поэтому процедуру лучше проводить комплексно – сначала использовать кислотные средства, затем  — едкую щелочь, которая заодно нейтрализует кислоту.

Приусадебное хозяйство Незаменима каустическая сода в проведении дезинфекции теплиц. После сбора урожая, садоводы обрабатывают раствором едкого натра стояки и поверхности закрытых площадей для выращивания ранней продукции, так как гидроокись натрия отлично убирает грибок и различные виды мелких паразитов, накапливающихся за период вегетации огурцов и помидоров.

Особенно эффективна едкая щелочь для санитарной обработки хозяйственных построек, в которых содержались домашние животные. Такая процедура позволяет удалять болезнетворные бактерии и микробы с внутренних поверхностей сараев и коровников. Подойдет каустическая сода и для применения в быту – ею хорошо проводить дезинфекцию погребов перед сезонной закладкой овощей.

Наименование параметра: Значение:
Химическая формула NaOН
Синонимы и названия иностранном языке sodium hydroxide (англ.)

едкий натр (рус.)

натрия гидроокись (рус.)

сода каустическая (рус.)

Тип вещества неорганическое
Внешний вид бесцветные ромбические кристаллы
Цвет белый, бесцветный
Вкус —*
Запах
Агрегатное состояние (при 20 °C и атмосферном давлении 1 атм.) твердое вещество
Плотность (состояние вещества – твердое вещество, при 20 °C), кг/м3 2130
Плотность (состояние вещества – твердое вещество, при 20 °C), г/см3 2,13
Температура кипения, °C 1403
Температура плавления, °C 323
Гигроскопичность высокая гигроскопичность
Молярная масса, г/моль 39,997

Получение каустика

Гидроксид натрия (едкий натр, каустик)

– в целлюлозно-бумажной промышленности для делигнификации(сульфатный процесс) целлюлозы, в производстве бумаги, картона, искусственных волокон, древесно-волоконных плит;

– для омыления жиров при производстве мыла, шампуня и других моющих средств;

– в химических отраслях промышленности – для нейтрализации кислот и кислотных оксидов, как реагент или катализатор в химических реакциях, в химическом анализе для титрования, для травления алюминия и в производстве чистых металлов, в нефтепереработке – для производства масел;

– для изготовления биодизельного топлива – получаемого из растительных масел и используемого для замены обычного дизельного топлива.

Для получения биодизеля к девяти массовым единицам растительного масла добавляется одна массовая единица спирта (то есть соблюдается соотношение 9:1), а также щелочной катализатор (NaOH). Полученный эфир (главным образом линолевой кислоты) отличается хорошей воспламеняемостью, обеспечиваемой высоким цетановым числом.

– в качестве агента для растворения засоров канализационных труб, в виде сухих гранул или в составе гелей. Гидроксид натрия дезагрегирует засор и способствует лёгкому продвижению его далее по трубе;

– в текстильной промышленности – для мерсеризации хлопка и шерсти. При кратковременной обработке едким натром с последующей промывкой волокно приобретает прочность и шелковистый блеск;

– в приготовлении пищи: для мытья и очистки фруктов и овощей от кожицы, в производстве шоколада и какао, напитков, мороженого, окрашивания карамели, для размягчения маслин и придания им чёрной окраски, при производстве хлебобулочных изделий. Зарегистрирован в качестве пищевой добавки E-524;

– в фотографии – как ускоряющее вещество в проявителях для высокоскоростной обработки фотографических материалов.

Области использования гидроокиси натрия в быту

Краткая характеристика гидроксида натрия

Модификации гидроксида натрия

Физические свойства гидроксида натрия

Получение гидроксида натрия

Химические свойства гидроксида натрия

Химические реакции гидроксида натрия

Применение и использование гидроксида натрия

Химическая формула гидроксида натрия NaOН.

Обладает высокой гигроскопичностью. На воздухе «расплывается», активно поглощая пары воды из воздуха.

Хорошо растворяется в воде, при этом выделяя большое количество тепловой энергии. Раствор едкого натра мылок на ощупь.

Гидроксид натрия – самая распространённая щёлочь. В год в мире производится и потребляется около 57 миллионов тонн едкого натра.

Гидроксид натрия – едкое, токсическое и коррозионно-активное вещество. Оно относится к веществам второго класса опасности. Поэтому при работе с ним требуется соблюдать осторожность. При попадании на кожу, слизистые оболочки и в глаза образуются серьёзные химические ожоги.

До 299 оС гидроксид натрия имеет устойчивую ромбическую модификацию (a = 0,33994 нм, c = 1,1377 нм), выше 299 оС – моноклинную.

— нет данных.

  1. 1. из оксида натрия (т.н. пиролитический метод):

Na2CO3 → Na2O CO2 (t  = 1000 oC),

Гидроксид натрия (едкий натр, каустик)

2NaHCO3 → Na2CO3  CO2  H2O (t  = 200 oC), после чего проводят первую химическую реакцию.

Na2O H2O → 2NaOH.

  1. 2. путем взаимодействия раствора соды с гашеной известью (т.н. известковый метод, каустификация соды):

Na2CO3  Ca(OH)2 → CaCO3  2NaOH (t  = 80 oC).

Карбонат кальция отделяется от раствора фильтрацией, затем раствор упаривается до получения расплавленного продукта, содержащего около 92 % масс. NaOH.

  1. 3. ферритным методом:

Fe2O3  Na2CO3 → 2NaFeO2  CO2 (t  = 1100-1200 oC).

Реакционную смесь спекают.

2NaFeO2  (n 1)H2O → Fe2O3•nH2O 2NaOH.

Реакция протекает медленно.

Fe2O3•nH2O выпадает в осадок, который после отделения его от раствора возвращается в процесс в первую реакцию.

  1. 4. электролизом:

2NaCl 2H2O → 2Na2O H2 Cl2.

Одновременно получаются также водород и хлор.

Гидроксид натрия, водород и хлор вырабатываются тремя электрохимическими методами. Два из них – электролиз с твёрдым катодом (диафрагменный и мембранный методы), третий – электролиз с жидким ртутным катодом (ртутный метод).

Водные растворы NaOH имеют сильную щелочную реакцию (pH 1%-раствора = 13,4).

3S 6NaOH → 2Na2S Na2SO3  3H2O (t = 50-60 °C).

В результате реакции образуются сульфид натрия, сульфит натрия и вода. При этом гидроксид натрия в качестве исходного вещества используется в виде разбавленного раствора.

2NaOH Cl2 → NaCl NaClO H2O.

В результате реакции образуются хлорид натрия, гипохлорит натрия и вода. При этом гидроксид натрия в качестве исходного вещества используется в виде холодного разбавленного раствора.

Аналогично проходят реакции гидроксида натрия и с другими галогенами.

2Al 6NaOH → 2NaAlO2  3H2  2Na2O (t = 450 °C).

В результате реакции образуются алюминат натрия, водород и оксид натрия.

2Al 2NaOH 6H2O → 2Na[Al(OH)4] 3H2.

В результате реакции образуются тетрагидроксоалюминат натрия и водород. При этом гидроксид натрия в качестве исходного вещества используется в виде концентрированного раствора.

Эта реакция использовалась в первой половине XX века в воздухоплавании: для заполнения водородом аэростатов и дирижаблей в полевых условиях, так как данная реакция не требует источников электроэнергии, а исходные реагенты для неё могут легко транспортироваться.

Zn 2NaOH → Na2ZnO2  H2 (t = 550 °C).

Гидроксид натрия (едкий натр, каустик)

В результате реакции образуются цинкат натрия и водород.

Zn 2NaOH 2H2O → Na2[Zn(OH)4] H2.

В результате реакции образуются тетрагидроксоцинкат натрия и водород. При этом гидроксид натрия в качестве исходного вещества используется в виде концентрированного раствора.

H3PO4  NaOH → NaH2PO4  H2O.

В результате реакции образуются дигидроортофосфат натрия и вода. При этом в качестве исходных веществ используются: фосфорная кислота в виде концентрированного раствора, гидроксид натрия в виде разбавленного раствора.

NaOH HNO3 → NaNO3  H2O.

В результате реакции образуются нитрат натрия и вода. При этом азотная кислота в качестве исходного вещества используется в виде разбавленного раствора.

Аналогично проходят реакции гидроксида натрия и с другими кислотами.

H2S 2NaOH → Na2S 2H2O,

H2S NaOH → NaHS H2O.

В результате реакции образуются в первом случае – сульфид натрия и вода, во втором – гидросульфид натрия и вода. При этом гидроксид натрия в первом случае в качестве исходного вещества используется в виде концентрированного раствора, во втором случае – в виде разбавленного раствора.

HF NaOH → NaF H2O,

2HF NaOH → NaHF2  H2O.

В результате реакции образуются в первом случае – фторид натрия и вода, во втором – гидрофторид натрия и вода. При этом гидроксид натрия и фтороводород в первом случае в качестве исходного вещества используются в виде разбавленного раствора, во втором случае фтороводород используется в виде в виде концентрированного раствора.

HBr NaOH → NaBr H2O.

В результате реакции образуются бромид натрия и вода. При этом гидроксид натрия и бромоводород в качестве исходного вещества используются в виде разбавленного раствора.

HI NaOH → NaI H2O.

В результате реакции образуются йодид натрия и вода. При этом гидроксид натрия в качестве исходного вещества используется в виде разбавленного раствора.

ZnO 2NaOH → Na2ZnO2  H2O (t = 500-600 °C).

Оксид цинка является амфотерным оксидом. В результате реакции образуются цинкат натрия и вода.

ZnO NaOH H2O → Na[Zn(OH)3] (t = 100 °C),

ZnO 2NaOH H2O → Na2[Zn(OH)4] (t = 90 °C).

Оксид цинка является амфотерным оксидом. В результате реакции образуется в первом случае – тригидроксоцинкат натрия и вода, во втором случае – тетрагидроксоцинкат натрия. При этом гидроксид натрия в качестве исходного вещества используется в первом случае в виде 40 % разбавленного раствора, во втором – в виде 60 % разбавленного раствора.

Al2O3  2NaOH → 2NaAlO2  H2O (t = 900-1100 °C).

Оксид алюминия является амфотерным оксидом. В результате реакции образуются алюминат натрия и вода.

Гидроксид натрия (едкий натр, каустик)

Al2O3  6NaOH 3H2O → 2Na3[Al(OH)6],

Al2O3  2NaOH 3H2O → 2Na[Al(OH)4].

Оксид алюминия является амфотерным оксидом. В результате реакции образуется в первом случае – гексагидроксоалюминат натрия, во втором случае – тетрагидроксоалюминат натрия. При этом гидроксид натрия в качестве исходного вещества используется во втором случае в виде концентрированного горячего  раствора.

Fe2O3  2NaOH → 2NaFeO2  H2O (t = 600 °C, р).

Оксид железа является амфотерным оксидом. В результате реакции образуются феррит натрия и вода. Реакция происходит при сплавлении исходных веществ.

Аналогично проходят реакции гидроксида натрия и с другими амфотерными оксидами.

NaOH CO2 → NaHCO3.

Гидроксид натрия (едкий натр, каустик)

В результате реакции образуется гидрокарбонат натрия.

SO2  NaOH → NaHSO3.

В результате реакции образуется гидросульфит натрия. При этом гидроксид натрия в качестве исходного вещества используется в виде разбавленного раствора.

2NaOH SiO2 → Na2SiO3  H2O (t = 900-1000 °C),

4NaOH SiO2 → Na4SiO4  2H2O.

В результате реакции образуется в первом случае – силикат натрия и вода, во втором случае – ортосиликат натрия и вода. При этом гидроксид натрия в качестве исходного вещества используется во втором случае в виде концентрированного раствора.

Al(OH)3  NaOH → NaAlO2  2H2O (t = 1000 °C),

Гидроксид натрия (едкий натр, каустик)

Al(OH)3  NaOH → Na[Al(OH)4].

Гидроксид алюминия является амфотерным основанием. В результате реакции образуются в первом случае – алюминат натрия и вода, во втором случае – тетрагидроксоалюминат натрия.  При этом гидроксид натрия в качестве исходного вещества используется во втором случае в виде концентрированного раствора.

Zn(OH)2  2NaOH → Na2[Zn(OH)4].

Гидроксид цинка является амфотерным основанием. В результате реакции образуется тетрагидроксоцинкат натрия.  При этом гидроксид натрия в качестве исходного вещества используется в виде концентрированного раствора.

Fe(OH)3  3NaOH ⇄ Na3[Fe(OH)6].

Гидроксид железа является амфотерным основанием. В результате реакции образуется гексагидроксоферрат натрия.

Аналогично проходят реакции гидроксида натрия и с другими амфотерными гидроксидами.

FeSO4  2NaOH → Fe(OH)2  Na2SO4 (kat = N2).

В результате реакции образуются гидроксид железа и сульфат натрия.

CuCl2  2NaOH → Cu(OH)2  2NaCl.

https://www.youtube.com/watch?v=SBwsupPPjYU

В результате реакции образуются гидроксид меди и хлорид натрия.  При этом гидроксид натрия в качестве исходного вещества используется в виде разбавленного раствора.